Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


First-of-its-kind study creates new tool for targeted cancer drug development

In a technical tour de force, scientists at Fox Chase Cancer Center have cataloged and cross-indexed the actions of 178 candidate drugs capable of blocking the activity of one or more of 300 enzymes, including enzymes critical for cancer and other diseases.

Additionally, a free library of the results has been made available online to the research community. This unique library represents an important new tool for accelerating the development of an entire class of targeted cancer drugs.

The enzymes, called kinases, catalyze a wide array of vital biological activities. Unfortunately, they can also act as drivers for many forms of cancer. For this reason, the candidate drugs, called kinase inhibitors, have the potential to act as powerful anti-cancer agents. They can also interfere with normal processes in the body, however, resulting in side effects. With the new library, researchers will be able to analyze the complex interactions of these inhibitors with their targets to develop cancer drugs that block specific kinases responsible for disease while seeking to avoid major side effects. The results from the Fox Chase team's first-of-its-kind study will appear in the November issue of Nature Biotechnology.

"These results have pushed the field closer to finding truly specific inhibitors of the processes that drive cancer," says Jeffrey R. Peterson, Ph.D., associate professor in the Cancer Biology Program at Fox Chase and senior author on the new study. "We now have a collection of kinase inhibitors that are more well-characterized and understood than any other library. The next step is to use this information to identify specific, effective therapies that stop cancer in its tracks while avoiding healthy processes."

Already, some cancer patients receive kinase inhibitors to treat their disease, and many more such drugs are being developed, says Peterson. But the body contains more than 500 different kinases performing numerous functions. And the vast majority of kinase inhibitors will act on more than one kinase, and so have the potential to interfere with both cancer and the normal processes the body needs for health and survival. Not surprisingly, some of the kinase inhibitors approved for use in cancer cause significant side effects, such as cardiovascular problems.

Until the last few years, however, researchers simply didn't have the technology to observe which kinases a specific inhibitor acted upon. Recently, however, the company Reaction Biology Corporation developed a way to observe the suite of effects from one kinase inhibitor.

For the first time, Peterson and his team catalogued the activity of 178 kinase inhibitors against 300 kinases. The experiment was like observing what happens after shooting a scattergun at a wall of balloons, he says. Before, scientists could only tell if you popped one particular balloon – now, however, they can see if other balloons were hit, as well. "We're essentially shining a light on the wall of balloons so we have a much better view of the balloons that were popped."

Not surprisingly, the researchers found that kinase inhibitors targeted multiple kinases, even some that appeared to be unrelated to each other. They have deposited this massive library of results on a free website so scientists studying kinases and inhibitors can learn more about their multiple interactions.

The fact that kinase inhibitors target multiple kinases may actually be a good thing, says Peterson. Initially, scientists had hoped to find an inhibitor that targets one specific kinase involved in cancer; now, they realize that cancer rarely results from one kinase. Instead, multiple kinases likely collaborate to produce the disease -- so to stop that process, you may have to hit all of those kinases together. "It may not be possible to develop a successful drug against one kinase," he says. Indeed, some kinase inhibitors that are effective in cancer -- Sutent (sunitinib) and Sprycel (dasatinib) -- are known to target multiple kinases.

Already, the data have identified inhibitors that act on particular kinases that researchers believe are involved in cancer, but had no known inhibitor – suggesting researchers may one day be able to modify those therapies so they target only those specific kinases and others involved in cancer and avoid kinases unrelated to the disease. In addition, Peterson and his team observed the suite of various kinases affected by cancer drugs that are already in use, with the hope researchers could reduce side effects by modifying the drugs to avoid those healthy kinases.

Co-authors include Theonie Anastassiadis and Karthik Devarajan, also from the Cancer Biology Progam at Fox Chase Cancer Center, and Sean Deacon and Haiching Ma from Reaction Biology Corporation.

The study was supported by a W.W. Smith Foundation Award, the Fox Chase Cancer Center Head and Neck Cancer Keystone Program, and grants from the National Institutes of Health.

Fox Chase Cancer Center is one of the leading cancer research and treatment centers in the United States. Founded in 1904 in Philadelphia as one of the nation's first cancer hospitals, Fox Chase was also among the first institutions to be designated a National Cancer Institute Comprehensive Cancer Center in 1974. Fox Chase researchers have won the highest awards in their fields, including two Nobel Prizes. Fox Chase physicians are also routinely recognized in national rankings, and the Center's nursing program has received the Magnet status for excellence three consecutive times. Today, Fox Chase conducts a broad array of nationally competitive basic, translational, and clinical research, with special programs in cancer prevention, detection, survivorship, and community outreach. For more information, visit Fox Chase's Web site at or call 1-888-FOX CHASE or (1-888-369-2427).

Diana Quattrone | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>