Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key regulatory genes often amplified in aggressive childhood tumor of the brainstem

20.09.2011
Study led by St. Jude Children’s Research Hospital scientists points to possible new treatment targets for diffuse intrinsic pontine gliomas; may tip the scales in the current debate about tumor biopsies

The largest study ever of a rare childhood brain tumor found more than half the tumors carried extra copies of specific genes linked to cancer growth, according to research led by St. Jude Children's Research Hospital investigators.

The findings identify possible new targets for treatment of a tumor in the brainstem known as diffuse intrinsic pontine glioma (DIPG). Current survival rates for children with this cancer are low. Fewer than 10 percent of DIPG patients are alive two years after diagnosis. DIPGs account for 10 to 15 percent of pediatric tumors of the brain and central nervous system.

This study analyzed 43 tumors. Forty-seven percent carried extra copies of genes that transmit signals for cell growth and survival. In 30 percent of tumors, the amplification involved different genes that help control cell division. Twenty-one percent of tumors included genes involved in both mechanisms. The research appears in the September 19 online edition of the Journal of Clinical Oncology.

"Our findings have potential therapeutic relevance and suggest it may be useful to combine drugs that target the pathways disrupted in these tumors both broadly and selectively," said Suzanne Baker, Ph.D., the paper's senior author and member of the St. Jude Department of Developmental Neurobiology.

The work also provided insight into DIPG's origins and added evidence that DIPG is a distinct tumor subtype within a category of brain and spinal tumors known as gliomas. The findings offer the most detailed picture yet of the molecular missteps, including chromosomal changes and altered gene activity, that characterize this tumor.

Efforts to improve patient survival have been hampered in part by limited DIPG samples. "These tumors are one of the most understudied types of cancer because the tumor infiltrates the brainstem, which controls vital functions. It cannot be surgically removed," Baker said. Safety concerns and the accuracy of diagnosis by non-invasive imaging mean that in the U.S. DIPG patients are rarely biopsied.

Baker said these and other research results have prompted renewed discussion about biopsies. "While there may be a rationale for biopsy at diagnosis to determine if specific therapy targets are amplified, our study showed that such amplifications are not always uniformly found within the tumor sample. This suggests that a small biopsy could fail to detect amplification of specific targets, and also that cells within the same tumor may show different responses to selective therapy," she said.

Of the 43 tumors in this study, 37 were donated after autopsy for use in research. Samples of normal tissue were collected as well. Researchers also analyzed other gliomas, including brainstem low-grade gliomas (LGG) and non-brainstem LGG, which occur in the brain outside the brainstem.

Scientists checked for deletions or additions of genetic material at more than 1 million locations across the genome of each tumor. A genome is the complete set of instructions needed to create and sustain a human or other organism. The information is encoded in the DNA molecule, which is packaged into the chromosomes found in nearly every cell.

The screening showed that although DIPGs included extra copies of a variety of genes, two key regulatory mechanisms harbored the most.

Forty-seven percent of DIPGs included extra genes in the receptor tyrosine kinase signaling pathway. This regulatory pathway is disrupted in many tumors and is associated with the unchecked tumor growth and survival that makes cancer deadly. In 30 percent of tumors, the pathway included extra copies of the PDGFRA gene, making it the most commonly amplified gene. Other amplified genes, included MET, IGF1R, ERBB4 and EGFR. In some DIPGs, the pathway included extra copies of more than one of these genes.

Genes that help regulate the cell cycle and cell division were also affected. About 30 percent of DIPGs contained extra copies of the genes that carry instructions for making the Cyclin D family of proteins or the cylin-dependent kinases CDK4 and CDK6.

Chemotherapy agents targeting both pathways are already used to treat other cancers. At St. Jude, a Phase I study is underway using the experimental drug crenolanib to block activity of the PDGFRA protein in DIPGs and related tumors.

When researchers compared gene activity in 27 DIPGs with results from other gliomas found outside the brainstem in both children and adults, they identified significant differences. Baker said those differences offer clues about where DIPGs begin and suggest the HOX family of genes might be involved. "We saw much higher expression of particular HOX gene family members in DIPGs compared to non-brainstem gliomas," she said. This gene family plays an important developmental role in a range of organisms.

The study's first authors are Barbara Paugh, Ph.D., a postdoctoral fellow in Baker's laboratory, and Alberto Broniscer, M.D., associate member of the St. Jude Department of Oncology. Other authors are Chunxu Qu, Claudia Miller, Junyuan Zhang, Ruth Tatevossian, Arzu Onar-Thomas, Justin Baker, Amar Gajjar and David Ellison, all of St. Jude; James Olson and J. Russell Geyer, both of the University of Washington, Seattle; Susan Chi, Dana Farber Cancer Institute, Boston; and Nasjla Saba da Silva, Universidade Federal de Sao Paulo, Brazil.

The research was supported in part by the National Institutes of Health, the National Brain Tumor Society, The Cure Starts Now Foundation, the Smile for Sophie Forever Foundation, Tyler's Treehouse Foundation, Musicians Against Childhood Cancer, the Noyes Brain Tumor Foundation, the Pediatric Low Grade Astrocytoma Foundation and ALSAC.

St. Jude Children's Research Hospital

St. Jude Children's Research Hospital is internationally recognized for its pioneering research and treatment of children with cancer and other life-threatening diseases. The hospital's research has helped push overall survival rates for childhood cancer from less than 20 percent when the institution opened to almost 80 percent today. It is the first and only National Cancer Institute-designated Comprehensive Cancer Center devoted solely to children, and no family ever pays St. Jude for care. For more information, visit www.stjude.org.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

Further reports about: Brain DIPG Foundation Oncology cell division gene activity specific gene

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>