Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kazak apple research key to preventing blue mold

30.09.2008
Blue mold, caused by the fungus Penicillium expansum, is the scourge of apple breeders and producers throughout the world, causing extensive losses to stored apples. As the familiar saying goes, one bad apple really can spoil the whole bunch—good fruit stored in containers with decaying fruit often absorbs a moldy odor and flavor.

In a survey of the New York market from 1972 to 1984, blue mold caused by Penicillium expansum was the most damaging parasitic postharvest disease of apples. Documented losses from blue mold and other postharvest diseases have focused on the fate of apples in storage, in transit, and in markets, but little information is available on the significant losses that can occur in apples sold to restaurants and in groceries.

Despite the severity of this problem, apple breeders have not been able to evaluate new fruit varieties for blue mold resistance because of the apple's gene pool.

A theory called "geography of genes" posits that breeders looking to create mold-resistant apples should obtain breeding seeds, or germplasm, from the fruit's geographic area of origin. The geography of genes theory has assumed particular significance as fruits' natural habitats are quickly being eliminated.

Based on this gene theory and looking for answers to the blue mold problem, Wojciech J. Janisiewicz, a researcher at the U.S. Department of Agriculture's Agricultural Research Service, undertook a study of a new apple germplasm collection from the center of origin in Kazakhstan. The germplasm represents a much broader gene pool and was evaluated for resistance to blue mold. Apples were harvested from trees that were propagated from budwood collected in Kazakhstan and from seedling trees originating from seeds of the same trees as the Elite budwood or from other wild seedling trees in Kazakhstan.

The objective of the study was to determine disease resistance to postharvest blue mold decay among apples from the Kazakhstan germplasm (Kazak) collection. According to Janisiewicz, "Our results indicate a greater genetic diversity among the Kazak apple collection than among cultivated apples, as evidenced by their broad range of fruit maturity, quality, and disease resistance patterns. The immune and resistant accessions may serve as a source of resistance in breeding programs and can be useful in explaining the mechanism of resistance to blue mold in apples. This may lead to the utilization of any identified high-resistance germplasm in apple breeding programs using traditional or genetic engineering approaches."

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org
http://hortsci.ashspublications.org/cgi/content/abstract/43/2/420

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>