Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Kazak apple research key to preventing blue mold

30.09.2008
Blue mold, caused by the fungus Penicillium expansum, is the scourge of apple breeders and producers throughout the world, causing extensive losses to stored apples. As the familiar saying goes, one bad apple really can spoil the whole bunch—good fruit stored in containers with decaying fruit often absorbs a moldy odor and flavor.

In a survey of the New York market from 1972 to 1984, blue mold caused by Penicillium expansum was the most damaging parasitic postharvest disease of apples. Documented losses from blue mold and other postharvest diseases have focused on the fate of apples in storage, in transit, and in markets, but little information is available on the significant losses that can occur in apples sold to restaurants and in groceries.

Despite the severity of this problem, apple breeders have not been able to evaluate new fruit varieties for blue mold resistance because of the apple's gene pool.

A theory called "geography of genes" posits that breeders looking to create mold-resistant apples should obtain breeding seeds, or germplasm, from the fruit's geographic area of origin. The geography of genes theory has assumed particular significance as fruits' natural habitats are quickly being eliminated.

Based on this gene theory and looking for answers to the blue mold problem, Wojciech J. Janisiewicz, a researcher at the U.S. Department of Agriculture's Agricultural Research Service, undertook a study of a new apple germplasm collection from the center of origin in Kazakhstan. The germplasm represents a much broader gene pool and was evaluated for resistance to blue mold. Apples were harvested from trees that were propagated from budwood collected in Kazakhstan and from seedling trees originating from seeds of the same trees as the Elite budwood or from other wild seedling trees in Kazakhstan.

The objective of the study was to determine disease resistance to postharvest blue mold decay among apples from the Kazakhstan germplasm (Kazak) collection. According to Janisiewicz, "Our results indicate a greater genetic diversity among the Kazak apple collection than among cultivated apples, as evidenced by their broad range of fruit maturity, quality, and disease resistance patterns. The immune and resistant accessions may serve as a source of resistance in breeding programs and can be useful in explaining the mechanism of resistance to blue mold in apples. This may lead to the utilization of any identified high-resistance germplasm in apple breeding programs using traditional or genetic engineering approaches."

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org
http://hortsci.ashspublications.org/cgi/content/abstract/43/2/420

More articles from Studies and Analyses:

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

The body's street sweepers

18.12.2017 | Life Sciences

Fast flowing heat in layered material heterostructures

18.12.2017 | Materials Sciences

Life on the edge prepares plants for climate change

18.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>