Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin study finds clue to birth defects in babies of mothers with diabetes

17.10.2011
Stimulation of metabolism-sensing enzyme that can regulate crucial gene explains how free radicals generated during maternal hyperglycemia cause malformation of the neural tube

In a paper published today in Diabetologia, a team at Joslin Diabetes Center, headed by Mary R. Loeken, PhD, has identified the enzyme AMP kinase (AMPK) as key to the molecular mechanism that significantly increases the risk of neural tube defects such as spina bifida and some heart defects among babies born to women with diabetes.

Even if women with diabetes -- either type 1 or type 2 -- work vigilantly to control their blood sugar levels around the time of conception, the risk of a defect is still twice that of the general population. This finding could lead to strategies to interfere with the mechanism and reduce the chances of such birth defects occurring.

Previous studies published by Loeken's lab showed that maternal hyperglycemia (high blood sugar) causes oxidative stress in the embryo, and inhibits expression of the Pax3 gene. Pax3 is essential to the formation of the neural tube, which in the embryo is the precursor to the brain and spinal cord. Oxidative stress results when oxidized molecules - called free radicals - are created faster than they can be eliminated.

However, Loeken said, it was not known how the cells that express Pax3 could sense the oxidative stress and why oxidative stress, which occurs throughout the embryo, only damages selective structures such as the neural tube.

In the paper published today, Loeken's team identifies the key to the process as AMP kinase, which is activated by oxidative stress and was found to signal the cell nucleus to block the expression of Pax3.

"The stimulation of a metabolism-sensing enzyme that can regulate specific genes explains how oxidative stress, which is generated throughout the embryo during maternal hyperglycemia, causes malformation of specific embryo structures," Loeken said.

"We now know that we must do whatever we can to prevent AMPK from being stimulated," said Loeken, who is a research investigator in Joslin's Section on Islet Cell and Regenerative Biology.

Trying to keep the mother's blood glucose levels under control is currently the only way to do that, she noted. "That's the best we can do right now," she said. But armed with the findings of this study, she noted, other researchers may be able to come up with drugs or other strategies to inhibit AMPK activity,

Dr. Loeken added, however, that formulating a strategy could be tricky because it is not known if interfering with AMPK activity -- while a good thing in preventing neural tube birth defects -- might also have negative effects on the embryo.

In their study Loeken and her group, including Yichao Wu, Marta Viana, and Shoba Thirumangalathu, used mice and cell lines to test their hypothesis that AMPK might be stimulated in the embryo and that stimulation of AMPK was responsible for blocking Pax3 expression and causing neural tube defects in response to high glucose.

"We found in this study that AMPK is stimulated in embryo by both high glucose and oxidative stress," Loeken said.

The study used interventions including a drug that activates AMPK and another that blocks it. The paper showed that a drug that increased AMPK activity mimics the effects of oxidative stress to inhibit expression of Pax3, thus inducing neural tube defects.

This research was supported by a grant from the National Institutes of Health.

About Joslin Diabetes Center

Joslin Diabetes Center is the world's preeminent diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Joslin is an independent, nonprofit institution affiliated with Harvard Medical School. For more information about Joslin, visit http://www.joslin.org. Keep up with Joslin research and clinical news at Inside Joslin at http://www.joslin.org/news/inside_joslin.html, Become a fan of Joslin on Facebook at http://www.facebook.com/joslindiabetes and follow Joslin on Twitter at http://www.twitter.com/joslindiabetes

Jeffrey Bright | EurekAlert!
Further information:
http://www.joslin.org

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>