Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Joslin study finds clue to birth defects in babies of mothers with diabetes

17.10.2011
Stimulation of metabolism-sensing enzyme that can regulate crucial gene explains how free radicals generated during maternal hyperglycemia cause malformation of the neural tube

In a paper published today in Diabetologia, a team at Joslin Diabetes Center, headed by Mary R. Loeken, PhD, has identified the enzyme AMP kinase (AMPK) as key to the molecular mechanism that significantly increases the risk of neural tube defects such as spina bifida and some heart defects among babies born to women with diabetes.

Even if women with diabetes -- either type 1 or type 2 -- work vigilantly to control their blood sugar levels around the time of conception, the risk of a defect is still twice that of the general population. This finding could lead to strategies to interfere with the mechanism and reduce the chances of such birth defects occurring.

Previous studies published by Loeken's lab showed that maternal hyperglycemia (high blood sugar) causes oxidative stress in the embryo, and inhibits expression of the Pax3 gene. Pax3 is essential to the formation of the neural tube, which in the embryo is the precursor to the brain and spinal cord. Oxidative stress results when oxidized molecules - called free radicals - are created faster than they can be eliminated.

However, Loeken said, it was not known how the cells that express Pax3 could sense the oxidative stress and why oxidative stress, which occurs throughout the embryo, only damages selective structures such as the neural tube.

In the paper published today, Loeken's team identifies the key to the process as AMP kinase, which is activated by oxidative stress and was found to signal the cell nucleus to block the expression of Pax3.

"The stimulation of a metabolism-sensing enzyme that can regulate specific genes explains how oxidative stress, which is generated throughout the embryo during maternal hyperglycemia, causes malformation of specific embryo structures," Loeken said.

"We now know that we must do whatever we can to prevent AMPK from being stimulated," said Loeken, who is a research investigator in Joslin's Section on Islet Cell and Regenerative Biology.

Trying to keep the mother's blood glucose levels under control is currently the only way to do that, she noted. "That's the best we can do right now," she said. But armed with the findings of this study, she noted, other researchers may be able to come up with drugs or other strategies to inhibit AMPK activity,

Dr. Loeken added, however, that formulating a strategy could be tricky because it is not known if interfering with AMPK activity -- while a good thing in preventing neural tube birth defects -- might also have negative effects on the embryo.

In their study Loeken and her group, including Yichao Wu, Marta Viana, and Shoba Thirumangalathu, used mice and cell lines to test their hypothesis that AMPK might be stimulated in the embryo and that stimulation of AMPK was responsible for blocking Pax3 expression and causing neural tube defects in response to high glucose.

"We found in this study that AMPK is stimulated in embryo by both high glucose and oxidative stress," Loeken said.

The study used interventions including a drug that activates AMPK and another that blocks it. The paper showed that a drug that increased AMPK activity mimics the effects of oxidative stress to inhibit expression of Pax3, thus inducing neural tube defects.

This research was supported by a grant from the National Institutes of Health.

About Joslin Diabetes Center

Joslin Diabetes Center is the world's preeminent diabetes research and clinical care organization. Joslin is dedicated to ensuring that people with diabetes live long, healthy lives and offers real hope and progress toward diabetes prevention and a cure. Joslin is an independent, nonprofit institution affiliated with Harvard Medical School. For more information about Joslin, visit http://www.joslin.org. Keep up with Joslin research and clinical news at Inside Joslin at http://www.joslin.org/news/inside_joslin.html, Become a fan of Joslin on Facebook at http://www.facebook.com/joslindiabetes and follow Joslin on Twitter at http://www.twitter.com/joslindiabetes

Jeffrey Bright | EurekAlert!
Further information:
http://www.joslin.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>