Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jet-lagged and forgetful? It's no coincidence

25.11.2010
Memory, learning problems persist long after periods of jet lag

Chronic jet lag alters the brain in ways that cause memory and learning problems long after one's return to a regular 24-hour schedule, according to research by University of California, Berkeley, psychologists.

Twice a week for four weeks, the researchers subjected female Syrian hamsters to six-hour time shifts – the equivalent of a New York-to-Paris airplane flight. During the last two weeks of jet lag and a month after recovery from it, the hamsters' performance on learning and memory tasks was measured.

As expected, during the jet lag period, the hamsters had trouble learning simple tasks that the hamsters in the control group aced. What surprised the researchers was that these deficits persisted for a month after the hamsters returned to a regular day-night schedule.

What's more, the researchers discovered persistent changes in the brain, specifically within the hippocampus, a part of the brain that plays an intricate role in memory processing. They found that, compared to the hamsters in the control group, the jet-lagged hamsters had only half the number of new neurons in the hippocampus following the month long exposure to jet lag. New neurons are constantly being added to the adult hippocampus and are thought to be important for hippocampal-dependent learning, Kriegsfeld said, while memory problems are associated with a drop in cell maturation in this brain structure.

"This is the first time anyone has done a controlled trial of the effects of jet lag on brain and memory function, and not only do we find that cognitive function is impaired during the jet lag, but we see an impact up to a month afterward," said Lance Kriegsfeld, UC Berkeley associate professor of psychology and a member of the Helen Wills Neuroscience Institute. "What this says is that, whether you are a flight attendant, medical resident, or rotating shift worker, repeated disruption of circadian rhythms is likely going to have a long-term impact on your cognitive behavior and function."

Kriegsfeld, graduate student Erin M. Gibson and their colleagues reported their findings this week in the online, open-access journal PLoS ONE.

"Other studies have shown that chronic transmeridian flights increase deficits in memory and learning along with atrophy in the brain's temporal lobe, suggesting a possible hippocampal deficit," said Gibson. "Our study shows directly that jet lag decreases neurogenesis in the hippocampus."

Jet lag is a result of crossing several time zones in a short period of time, with the worst effects occurring during eastward travel. Each of us has an internal, 24-hour clock that drives our so-called circadian rhythm, which is reset every day by small amounts. When a person enters a time zone that is not synched with his or her internal clock, it takes much longer to reset this daily rhythm, causing jet lag until the internal clock gets re-synched.

This acute disruption of circadian rhythms can cause general malaise as well as gastrointestinal problems because the body's hunger cycle is out of sync with meal times, Kriegsfeld said.

For air travelers, jet lag is a minor annoyance from which most recover within a few days, perhaps with the help of a melatonin pill. For people who repeatedly cross time zones, such as flight attendants, the effects have been shown to be more serious. Flight attendants and rotating shift workers – people who regularly alternate between day and night shifts – have been found to have learning and memory problems, decreased reaction times, higher incidences of diabetes, heart disease, hypertension and cancer, and reduced fertility. The World Health Organization lists shift work as a carcinogen.

To date, these effects have been documented only in jet-lagged subjects, not after recovery from jet lag, Gibson said. The UC Berkeley study is the first to look at long-term effects as well as changes in brain anatomy.

"The evidence is overwhelming that disruptions in circadian timing have a direct impact on human health and disease," Kriegsfeld said. "We've now shown that the effects are long-lasting, not only to brain function, but likely to brain structure."

The researchers used hamsters in their study because they are a classic model of circadian rhythms. Their bodily rhythms are so precise, Kriegsfeld said, that they will produce eggs, or ovulate, every 96 hours to within a window of a few minutes.

Because jet lag can increase stress hormones like cortisol and disrupt reproduction, the researchers controlled for the effects of these by removing adrenal glands or ovaries in some of the hamsters and injecting normal levels of hormone supplements of corticosterone and estrogen, respectively. These hamsters showed a similar reduction in new, mature hippocampal neurons in the brain.

"The change was really dramatic and shows that the effect on behavior and the brain is direct, not a secondary effect of increased stress hormones," Gibson said. "They are not due to increased cortisol concentrations."

The experiments also suggest that the low number of mature neurons in the hippocampus in jet-lagged hamsters was not due to decreased production of new cells, but rather, fewer new cells maturing into working cells, or perhaps new cells dying prematurely. Further studies are planned to determine the root cause of the reduction in mature neurons.

How do you avoid jet lag problems? Kriegsfeld said that, in general, people should allow one day of recovery for every one-hour time zone shift. Those, such as night-shift workers, who cannot return to a normal day-night cycle should sleep in a room with light-tight curtains shielded from outside noise in order to properly adjust to an altered sleep schedule.

Other authors of the paper are UC Berkeley undergraduate psychology students Connie Wang, Stephanie Tjho and Neera Khattar.

The work was supported by The Hellman Family Faculty Fund.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>