Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jellyfish Blooms Shunt Food Energy from Fish to Bacteria

08.06.2011
A new study by researchers at the Virginia Institute of Marine Science (VIMS) shows that jellyfish are more than just a nuisance to bathers and boaters, drastically altering marine food webs by shunting food energy from fish toward bacteria.

An apparent increase in the size and frequency of jellyfish blooms in coastal and estuarine waters around the world during the last few decades means that jellies’ impact on marine food webs is likely to increase into the future.

The results of the study, led by recent VIMS Ph.D. graduate Rob Condon—now a faculty member at the Dauphin Island Sea Lab (DISL) in Alabama—appear in the latest issue of the Proceedings of the National Academy of Sciences. His co-authors are VIMS professors Deborah Steinberg and Deborah Bronk, Paul del Giorgio of the Université du Québec à Montréal, Thierry Bouvier of Université Montpellier in France, Monty Graham of DISL, and Hugh Ducklow of the Marine Biological Laboratory in Woods Hole, Massachusetts.

Condon conducted his field studies by sampling jellyfish blooms in the York River, a tributary of lower Chesapeake Bay. The team’s experimental work took place in laboratories at VIMS, and in Canada and France. The researchers tracked the flow of food energy in the lab by measuring the amount of carbon taken up and released by jellyfish and bacteria within closed containers during “incubation” experiments of varying length. Carbon is the “currency” of energy exchange in living systems.

“Jellyfish are voracious predators,” says Condon. “They impact food webs by capturing plankton that would otherwise be eaten by fish and converting that food energy into gelatinous biomass. This restricts the transfer of energy up the food chain, because jellyfish are not readily consumed by other predators.”

Jellyfish and Marine Bacteria
Jellyfish also shunt food energy away from fish and shellfish that humans like to eat through their affects on the bacterial community. “Marine bacteria typically play a key role in recycling carbon, nitrogen, phosphorus, and other byproducts of organic decay back into the food web,” says Condon. “But in our study, we found that when bacteria consumed dissolved organic matter from jellyfish they shunted it toward respiration rather than growth.”

The upshot of this “jelly carbon shunt” is that bacteria in jelly-laden waters end up converting carbon back to carbon dioxide, rather than using it to grow larger or reproduce. This means the carbon is lost as a direct source of organic energy for transfer up the food web.

The researchers think the shift toward bacterial respiration happens because jellyfish produce organic matter that is extra rich in carbon. They do so through excretion and the sloughing of mucus. “The mucus is the slime you feel when you pick up a jelly,” says Steinberg.

The jellyfish in Condon’s experiments released large quantities of carbon-rich organic matter—with 25- to 30-times more carbon than nitrogen. That compares to a ratio of 6 parts carbon to 1 part nitrogen for the organic matter found dissolved in typical marine waters.

“The bacteria metabolized this carbon-rich material two to six times faster than they did with dissolved organic matter from water without jellyfish,” says Condon. “This rapid metabolism shunted carbon toward respiration rather than production, reducing their potential to assimilate this material by 10% to 15%.”

Steinberg says that bacterial metabolism of dissolved organic matter from jellyfish is like “drinking Gatorade” while metabolism of dissolved organic matter from phytoplankton and other sources is like “eating a hamburger.” “It just doesn’t provide an efficient food source for marine bacteria,” she says.

The Microbial Community
A final significant finding from the team’s research is that an influx of dissolved organic matter from jellyfish blooms changes the make-up of the local microbial community. “Dissolved organic matter from jellyfish favored the rapid growth and dominance of specific bacterial groups that were otherwise rare in the York River,” says Condon. “This implies that jelly-DOM was channeled through a small component of the local microbial assemblage and thus induced large changes in community composition.”

Overall, says Condon, the team’s findings “suggest major shifts in microbial structure and function associated with jellyfish blooms, and a large detour of energy toward bacteria and away from higher trophic levels.”

He adds that a host of factors, including climate change, over-harvesting of fish, fertilizer runoff, and habitat modifications could help to fuel jellyfish blooms into the future. “Indeed,” he says, “we’ve seen this already in Chesapeake Bay. If these swarms continue to emerge, we could see a substantial biogeochemical impact on our ecosystems.”

“Simply knowing how carbon is processed by phytoplankton, zooplankton, microbes or other trophic levels in space and time can lead to estimates of how much carbon energy is available for fish to consume,” he said. “The more we know, the better we can manage ecosystem resources.”

David Malmquist | Newswise Science News
Further information:
http://www.vims.edu

Further reports about: Chesapeake Bay Condon DISL Food Chain Plus Marine science VIMS bacteria blooms marine food web

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>