Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jellyfish Blooms Shunt Food Energy from Fish to Bacteria

08.06.2011
A new study by researchers at the Virginia Institute of Marine Science (VIMS) shows that jellyfish are more than just a nuisance to bathers and boaters, drastically altering marine food webs by shunting food energy from fish toward bacteria.

An apparent increase in the size and frequency of jellyfish blooms in coastal and estuarine waters around the world during the last few decades means that jellies’ impact on marine food webs is likely to increase into the future.

The results of the study, led by recent VIMS Ph.D. graduate Rob Condon—now a faculty member at the Dauphin Island Sea Lab (DISL) in Alabama—appear in the latest issue of the Proceedings of the National Academy of Sciences. His co-authors are VIMS professors Deborah Steinberg and Deborah Bronk, Paul del Giorgio of the Université du Québec à Montréal, Thierry Bouvier of Université Montpellier in France, Monty Graham of DISL, and Hugh Ducklow of the Marine Biological Laboratory in Woods Hole, Massachusetts.

Condon conducted his field studies by sampling jellyfish blooms in the York River, a tributary of lower Chesapeake Bay. The team’s experimental work took place in laboratories at VIMS, and in Canada and France. The researchers tracked the flow of food energy in the lab by measuring the amount of carbon taken up and released by jellyfish and bacteria within closed containers during “incubation” experiments of varying length. Carbon is the “currency” of energy exchange in living systems.

“Jellyfish are voracious predators,” says Condon. “They impact food webs by capturing plankton that would otherwise be eaten by fish and converting that food energy into gelatinous biomass. This restricts the transfer of energy up the food chain, because jellyfish are not readily consumed by other predators.”

Jellyfish and Marine Bacteria
Jellyfish also shunt food energy away from fish and shellfish that humans like to eat through their affects on the bacterial community. “Marine bacteria typically play a key role in recycling carbon, nitrogen, phosphorus, and other byproducts of organic decay back into the food web,” says Condon. “But in our study, we found that when bacteria consumed dissolved organic matter from jellyfish they shunted it toward respiration rather than growth.”

The upshot of this “jelly carbon shunt” is that bacteria in jelly-laden waters end up converting carbon back to carbon dioxide, rather than using it to grow larger or reproduce. This means the carbon is lost as a direct source of organic energy for transfer up the food web.

The researchers think the shift toward bacterial respiration happens because jellyfish produce organic matter that is extra rich in carbon. They do so through excretion and the sloughing of mucus. “The mucus is the slime you feel when you pick up a jelly,” says Steinberg.

The jellyfish in Condon’s experiments released large quantities of carbon-rich organic matter—with 25- to 30-times more carbon than nitrogen. That compares to a ratio of 6 parts carbon to 1 part nitrogen for the organic matter found dissolved in typical marine waters.

“The bacteria metabolized this carbon-rich material two to six times faster than they did with dissolved organic matter from water without jellyfish,” says Condon. “This rapid metabolism shunted carbon toward respiration rather than production, reducing their potential to assimilate this material by 10% to 15%.”

Steinberg says that bacterial metabolism of dissolved organic matter from jellyfish is like “drinking Gatorade” while metabolism of dissolved organic matter from phytoplankton and other sources is like “eating a hamburger.” “It just doesn’t provide an efficient food source for marine bacteria,” she says.

The Microbial Community
A final significant finding from the team’s research is that an influx of dissolved organic matter from jellyfish blooms changes the make-up of the local microbial community. “Dissolved organic matter from jellyfish favored the rapid growth and dominance of specific bacterial groups that were otherwise rare in the York River,” says Condon. “This implies that jelly-DOM was channeled through a small component of the local microbial assemblage and thus induced large changes in community composition.”

Overall, says Condon, the team’s findings “suggest major shifts in microbial structure and function associated with jellyfish blooms, and a large detour of energy toward bacteria and away from higher trophic levels.”

He adds that a host of factors, including climate change, over-harvesting of fish, fertilizer runoff, and habitat modifications could help to fuel jellyfish blooms into the future. “Indeed,” he says, “we’ve seen this already in Chesapeake Bay. If these swarms continue to emerge, we could see a substantial biogeochemical impact on our ecosystems.”

“Simply knowing how carbon is processed by phytoplankton, zooplankton, microbes or other trophic levels in space and time can lead to estimates of how much carbon energy is available for fish to consume,” he said. “The more we know, the better we can manage ecosystem resources.”

David Malmquist | Newswise Science News
Further information:
http://www.vims.edu

Further reports about: Chesapeake Bay Condon DISL Food Chain Plus Marine science VIMS bacteria blooms marine food web

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>