Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson study determines bone marrow stromal stem cells may aid in stroke recovery

02.12.2010
A research study from the Farber Institute for Neurosciences and the Department of Neuroscience at Thomas Jefferson University determines bone marrow stromal stem cells may aid in stroke recovery. The results can be found in Cell Transplantation – The Regenerative Medicine Journal, issue 19(9).

The study examining the effects of a systematic administration of either rat (allogenic) or human (xenogenic) bone marrow stem cells (MSC) administered to laboratory rats one day after their simulated strokes found "significant recovery" of motor behavior on the first day. Early administration was found to be more effective than administration seven days after the simulated strokes.

"The timing of stem cell treatment was critical to the magnitude of the positive effects," said the study's lead author, Lorraine Iacovitti, Ph.D., professor, Department of Neuroscience at Jefferson Medical College of Thomas Jefferson University. "In the host animals we found profound changes and preserved brain structure along with long-lasting motor function improvement."

According to Dr. Iacovitti, there has been little research into just how stem cell transplantation modifies inflammatory and immune effects as well as promotes regenerative effects, such as blood vessel growth. They observed increased activation of microglia as well as modification of the circulating levels of cytokines and growth factors, including elevated VEGF and new blood vessel formation (angiogenesis) following transplantation.

"The mechanism through which MSCs achieve these remarkable effects remains elusive," said Dr. Iacovitti. "It is possible that activated glia cells (nonneuronal cells that perform a number of tasks in the brain) may play some role in the response, perhaps by partitioning off the infarcted region and limiting the spread of ischemic brain damage without inducing scar formation."

The research team concluded that there was "little doubt" that the administration of stem cells can modify the cellular and molecular landscape of the brain and blood, limiting damage and protecting the stroke-injured brain.

Other Jefferson researchers participating in this study included Robert Rosenwasser, M.D. (Neurological Surgery) and Ming Yang, M.D., Ph.D. (Neuroscience).

Ed Federico | EurekAlert!
Further information:
http://www.jefferson.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>