Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Seeing isn't believing

08.09.2011
Pay attention! It's a universal warning, which implies that keeping close watch helps us perceive the world more accurately.

But a new study by Yale University cognitive psychologists Brandon Liverence and Brian Scholl finds that intense focus on objects can have the opposite effect: It distorts perception of where things are in relation to one another. The findings will be published in an upcoming issue of Psychological Science, a journal of the Association for Psychological Science.

"Figuring out where objects are in the world seems like one of the most basic and important jobs the brain does," says Liverence, a graduate student. "It was surprising to discover that even this simple type of perception is warped by our minds." The researchers studied such distortions when people had to focus their attention on some objects, but not others. When they did this, Liverence explains, the "attended objects" were seen as closer together than they really were, while the other objects were seen as farther apart than they really were.

To test this phenomenon, the researchers had people—10 in each of three experiments—complete simple visual tasks. In the one with the most striking results, participants watched four circles as they moved around on a computer monitor while rapidly changing colors. Before the movement began, two of the circles flashed several times; these were the "targets." During the ensuing motion, the participants had to press a key whenever either of those targets turned red or blue. Then, after several seconds of motion, all of the circles disappeared, and the participants clicked with a mouse on the locations they'd last seen the circles.

The subjects located the objects with high accuracy—good news, says Liverence, for people trying to cross the street. But their errors were not random. Instead, the researchers discovered two distortions—one expected, one surprising. As in past research, the reported locations of the circles were all compressed slightly toward the center of the display, as if the mind's representation of the world were slightly shrunk. Beyond this global distortion, though, subjects remembered the two target circles as closer to each other than they actually were (as if they were attracting each other), and reported the other two circles as farther apart than they'd been (as if they were repelling each other).

The findings add to a growing body of cognitive psychology that destabilizes our trust in what we think we know for sure and how we think we can know it more surely. "Attention is the way our minds connect with things in the environment, enabling us to see, remember, and interact with those things," says Liverence. "We tend to think that attention clarifies what's out there. But it also distorts."

For more information about this study, please contact: Brandon M. Liverence at brandon.liverence@yale.edu.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Selective Attention Warps Spatial Representation: Parallel but Opposing Effects on Attended vs. Inhibited Objects" and access to other Psychological Science research findings, please contact Lucy Hyde at 202-293-9300 or lhyde@psychologicalscience.org.

Lucy Hyde | EurekAlert!
Further information:
http://www.psychologicalscience.org

Further reports about: Psychological Science Science TV universal warning visual tasks

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>