Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Seeing isn't believing

Pay attention! It's a universal warning, which implies that keeping close watch helps us perceive the world more accurately.

But a new study by Yale University cognitive psychologists Brandon Liverence and Brian Scholl finds that intense focus on objects can have the opposite effect: It distorts perception of where things are in relation to one another. The findings will be published in an upcoming issue of Psychological Science, a journal of the Association for Psychological Science.

"Figuring out where objects are in the world seems like one of the most basic and important jobs the brain does," says Liverence, a graduate student. "It was surprising to discover that even this simple type of perception is warped by our minds." The researchers studied such distortions when people had to focus their attention on some objects, but not others. When they did this, Liverence explains, the "attended objects" were seen as closer together than they really were, while the other objects were seen as farther apart than they really were.

To test this phenomenon, the researchers had people—10 in each of three experiments—complete simple visual tasks. In the one with the most striking results, participants watched four circles as they moved around on a computer monitor while rapidly changing colors. Before the movement began, two of the circles flashed several times; these were the "targets." During the ensuing motion, the participants had to press a key whenever either of those targets turned red or blue. Then, after several seconds of motion, all of the circles disappeared, and the participants clicked with a mouse on the locations they'd last seen the circles.

The subjects located the objects with high accuracy—good news, says Liverence, for people trying to cross the street. But their errors were not random. Instead, the researchers discovered two distortions—one expected, one surprising. As in past research, the reported locations of the circles were all compressed slightly toward the center of the display, as if the mind's representation of the world were slightly shrunk. Beyond this global distortion, though, subjects remembered the two target circles as closer to each other than they actually were (as if they were attracting each other), and reported the other two circles as farther apart than they'd been (as if they were repelling each other).

The findings add to a growing body of cognitive psychology that destabilizes our trust in what we think we know for sure and how we think we can know it more surely. "Attention is the way our minds connect with things in the environment, enabling us to see, remember, and interact with those things," says Liverence. "We tend to think that attention clarifies what's out there. But it also distorts."

For more information about this study, please contact: Brandon M. Liverence at

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Selective Attention Warps Spatial Representation: Parallel but Opposing Effects on Attended vs. Inhibited Objects" and access to other Psychological Science research findings, please contact Lucy Hyde at 202-293-9300 or

Lucy Hyde | EurekAlert!
Further information:

Further reports about: Psychological Science Science TV universal warning visual tasks

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>