Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Irrigation in Arid Regions Can Increase Malaria Risk for a Decade

14.08.2013
New irrigation systems in arid regions benefit farmers but can increase the local malaria risk for more than a decade — which is longer than previously believed — despite intensive and costly use of insecticides, new University of Michigan-led study in northwest India concludes.

The study's findings demonstrate the need to include a strong, binding commitment to finance and implement long-term public health and safety programs when building large-scale irrigation projects, according to the researchers.

"In these dry, fragile ecosystems, where increase in water availability from rainfall is the limiting factor for malaria transmission, irrigation infrastructure can drastically alter mosquito population abundance to levels above the threshold needed to maintain malaria transmission," said lead author and U-M graduate student Andres Baeza, who works in the laboratory of Mercedes Pascual in the Department of Ecology and Evolutionary Biology.

"Our results highlight the need for considering health impacts in the long-term planning, assessment and mitigation of projects related to water resources," Baeza said.

The researchers studied changes in land use and malaria risk around a large irrigation project under construction in a semi-arid area in the northeast part of the Indian state of Gujarat. Water from the project is eventually expected to cover more than 47 million acres and will benefit about a million farmers.

Malaria risk in arid regions often rises when irrigation is introduced, due to increased amounts of standing water that serve as mosquito breeding sites. Globally, the number of people at risk of contracting malaria due to proximity to irrigation canals and related infrastructure has been estimated at 800 million, which represents about 12 percent of the global malaria burden.

Historical evidence shows that after irrigation is introduced into arid locations, the increased malaria risk eventually subsides and that this food versus disease dilemma is a temporary stage on the road to greater prosperity.

The new study demonstrates that this transition phase from high risk to low disease prevalence can last more than a decade. The study is the first to combine satellite imagery of vegetation cover with public health records of malaria cases over a large region to track changes that occur as a mega-irrigation project progresses.

The findings are scheduled to be published online Aug. 12 in the Proceedings of the National Academy of Sciences.

"By following the changes in malaria incidence, vegetation and socioeconomic data at the level of sub-districts, we identified a transition phase toward sustainable low malaria risk lasting for more than a decade and characterized by an enhanced environmental malaria risk despite intensive mosquito control efforts," said Pascual, the Rosemary Grant Collegiate Professor of Ecology and Evolutionary Biology at U-M and a Howard Hughes Medical Institute Investigator.

Pascual said the findings show that environmental methods for sustainable disease control are urgently needed. Several of these methods — including intermittent irrigation and periodic flushing of canals — have proved to be affordable, effective and feasible to implement at local levels.

"The challenge ahead, then, will be to apply these methods over extensive regions and maintain them for long enough periods," said Pascual, a theoretical ecologist.

Malaria is caused by the Plasmodium parasite, which is transmitted via the bites of infected Anopheles mosquitoes. In the human body, the parasites multiply in the liver and then infect red blood cells.

In the PNAS study, the researchers examined epidemiological data on microscopically confirmed malaria cases from rural areas, some dating back to 1997. Using satellite imagery, the researchers were able to discriminate irrigated crops from non-irrigated crops by their spectral signature.

They were then able to determine how levels of malaria changed as the massive irrigation project progressed. They showed that elevated disease risk — despite heavy use of insecticides — is concentrated in the areas adjacent to the main irrigation canal that have experienced the most pronounced change in irrigation levels in the last decade.

They tied the remote sensing and epidemiological findings to various socioeconomic factors. In general, the high-risk areas had a lower proportion of literate people and more limited access to sources of clean drinking water.

"A better understanding of socioeconomic and ecological differences between recently irrigated and mature irrigation areas could provide the means to reduce the malaria burden and shorten the transition phase," the authors concluded.

In addition to Baeza and Pascual, the authors of the PNAS paper are Menno Jan Bouma of the London School of Tropical Medicine and Hygiene, Ramesh Dhiman of India's National Institute of Malaria Research, U-M's Edward B. Baskerville, Pietro Ceccato of Columbia University, and Rajpal Yadav of India's National Institute of Malaria Research and the World Health Organization.

Department of Ecology and Evolutionary Biology: http://www.lsa.umich.edu/eeb/

Jim Erickson | Newswise
Further information:
http://www.umich.edu
http://www.lsa.umich.edu/eeb/

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>