Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive Species: "Away-Field Advantage" Weaker Than Ecologists Thought

22.05.2013
For decades, ecologists have assumed the worst invasive species—such as brown tree snakes and kudzu—have an “away-field advantage.” They succeed because they do better in their new territories than they do at home. A new study led by the Smithsonian Environmental Research Center reveals that this fundamental assumption is not nearly as common as people might think.

The away-field advantage hypothesis hinges on this idea: Successful invaders do better in a new place because the environment is more hospitable to them. They escape their natural enemies, use novel weapons on unsuspecting natives and generally outcompete natives on their own turf by disrupting the balance of nature in their new ecosystems.

“They’ve been presumed to be good citizens at home and bad citizens away,” said ecologist John Parker, lead author of the paper published in the May issue of the journal Ecology. But when researchers investigated it on a large scale, they discovered the assumption was not true for all, or even most, of the species they looked at.

The research team, which included 24 invasion biologists from the National Science Foundation-funded Global Invasions Network, compiled data on 53 different plant and animal invaders. They pulled 37 from the list of “100 of the World’s Worst Invasive Alien Species,” and 16 from an exhaustive search of the published literature. They ended up with a list that included European green crabs, Asian kelp, nutria, brown tree snakes, garlic mustard and other common suspects. After combing through hundreds to thousands of papers to find published demographic data, they were able to do a statistical analysis of whether invaders were bigger, more reproductively successful and thus more abundant in their introduced ranges.

On the surface the assumption seemed to hold true. Across all 53 species, there was a 96 percent probability invaders would do better in their adopted ecosystems. But closer inspection revealed some surprising weaknesses within the paradigm. When they looked at individual species, they discovered a handful of extremely successful invaders were driving up the average. In reality, more than half of the species performed roughly the same at home versus abroad, and a few were even likely to perform worse in foreign territory.

This suggests that the key to a successful invasion depends less on the environment and more on the individual species doing the invading. Plants, for example, were more likely than animals to thrive abroad in this study. But even the plants showed a wide range of variability, with many (like garlic mustard) performing equally well in both their introduced and home ranges.

“The general notion that invasive species are doing something fundamentally different in their new versus their old ranges may be a fair starting point overall, but there is a lot of grey area even for the worst-case invaders,” Parker said. “These findings might also have applications for management. Some species might be invasive regardless of novel conditions, whereas others thrive only because of their new environment. If this ‘newfound’ success is reversible, it’s these latter.

Kristen Minogue | Newswise
Further information:
http://www.si.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>