Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Invasive Species: "Away-Field Advantage" Weaker Than Ecologists Thought

22.05.2013
For decades, ecologists have assumed the worst invasive species—such as brown tree snakes and kudzu—have an “away-field advantage.” They succeed because they do better in their new territories than they do at home. A new study led by the Smithsonian Environmental Research Center reveals that this fundamental assumption is not nearly as common as people might think.

The away-field advantage hypothesis hinges on this idea: Successful invaders do better in a new place because the environment is more hospitable to them. They escape their natural enemies, use novel weapons on unsuspecting natives and generally outcompete natives on their own turf by disrupting the balance of nature in their new ecosystems.

“They’ve been presumed to be good citizens at home and bad citizens away,” said ecologist John Parker, lead author of the paper published in the May issue of the journal Ecology. But when researchers investigated it on a large scale, they discovered the assumption was not true for all, or even most, of the species they looked at.

The research team, which included 24 invasion biologists from the National Science Foundation-funded Global Invasions Network, compiled data on 53 different plant and animal invaders. They pulled 37 from the list of “100 of the World’s Worst Invasive Alien Species,” and 16 from an exhaustive search of the published literature. They ended up with a list that included European green crabs, Asian kelp, nutria, brown tree snakes, garlic mustard and other common suspects. After combing through hundreds to thousands of papers to find published demographic data, they were able to do a statistical analysis of whether invaders were bigger, more reproductively successful and thus more abundant in their introduced ranges.

On the surface the assumption seemed to hold true. Across all 53 species, there was a 96 percent probability invaders would do better in their adopted ecosystems. But closer inspection revealed some surprising weaknesses within the paradigm. When they looked at individual species, they discovered a handful of extremely successful invaders were driving up the average. In reality, more than half of the species performed roughly the same at home versus abroad, and a few were even likely to perform worse in foreign territory.

This suggests that the key to a successful invasion depends less on the environment and more on the individual species doing the invading. Plants, for example, were more likely than animals to thrive abroad in this study. But even the plants showed a wide range of variability, with many (like garlic mustard) performing equally well in both their introduced and home ranges.

“The general notion that invasive species are doing something fundamentally different in their new versus their old ranges may be a fair starting point overall, but there is a lot of grey area even for the worst-case invaders,” Parker said. “These findings might also have applications for management. Some species might be invasive regardless of novel conditions, whereas others thrive only because of their new environment. If this ‘newfound’ success is reversible, it’s these latter.

Kristen Minogue | Newswise
Further information:
http://www.si.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>