Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Invasive kudzu is major factor in surface ozone pollution, study shows

Kudzu, an invasive vine that is spreading across the southeastern United States and northward, is a major contributor to large-scale increases of the pollutant surface ozone, according to a study published the week of May 17 in the journal Proceedings of the National Academy of Sciences.

Kudzu, a leafy vine native to Japan and southeastern China, produces the chemicals isoprene and nitric oxide, which, when combined with nitrogen in the air, form ozone, an air pollutant that causes significant health problems for humans. Ozone also hinders the growth of many kinds of plants, including crop vegetation.

"We found that this chemical reaction caused by kudzu leads to about a 50 percent increase in the number of days each year in which ozone levels exceed what the Environmental Protection Agency deems as unhealthy," said study co-author Manuel Lerdau, a University of Virginia professor of environmental sciences and biology. "This increase in ozone completely overcomes the reductions in ozone realized from automobile pollution control legislation."

Lerdau and his former graduate student, lead author Jonathan Hickman – now a postdoctoral fellow at Columbia University – used field studies at three sites in Georgia to determine the gas production of kudzu. They then worked with Shiliang Wu and Loretta Mickley, atmospheric scientists at Harvard University, who used atmospheric chemistry computer models to evaluate the potential 50-year effect of kudzu invasion on regional air quality.

"Essentially what we found is that this biological invasion has the capacity to degrade air quality, and in all likelihood over time lead to increases in air pollution, increases in health problems caused by that air pollution, and decreases in agricultural productivity," Lerdau said.

"This is yet another compelling reason to begin seriously combating this biological invasion. What was once considered a nuisance, and primarily of concern to ecologists and farmers, is now proving to be a potentially serious health threat."

Ozone acts as an irritant to the eyes, nose and throat, and can damage the lungs, sometimes causing asthma or worsening asthma symptoms. It also is a mutagen and can cause lung cancer.

Ozone, while essential to the health of the Earth in the upper atmosphere where it shields the surface from excess ultraviolet radiation, is hazardous to human health when it forms at the earth's surface. This occurs most often in the summertime as plants grow and produce chemicals that react with the air.

Introduced to the United States in the late 19th century, kudzu, with its unique nitrogen-fixing physiology, allows a rapid, nearly uninhibited rate of growth, about three times the rate of trees and other vegetation. The vine was cultivated more extensively in the 1920s and 1930s as a control for soil erosion and rapidly became known as "the vine that ate the South."

In recent, milder winters, Kudzu has expanded its range northward into Pennsylvania and New York.

"What was once a Southern problem is now becoming an East Coast issue," Lerdau said.

Various strategies are used for controlling and eradicating kudzu, including livestock grazing, burning, mowing and herbicides.

Fariss Samarrai | EurekAlert!
Further information:

Further reports about: Invasive Gartenameise Kudzu computer model health problems

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>