Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International study: Where there’s smoke or smog, there’s climate change

16.01.2013
In addition to causing smoggy skies and chronic coughs, soot – or black carbon – turns out to be the number two contributor to global warming. It’s second only to carbon dioxide, according to a four-year assessment by an international panel.
The new study concludes that black carbon, the soot particles in smoke and smog, contributes about twice as much to global warming as previously estimated, even by the 2007 Intergovernmental Panel on Climate Change.

“We were surprised at its potential contribution to climate,” said Sarah Doherty, a University of Washington atmospheric scientist and one of four coordinating lead authors.

The silver lining may be that controlling these emissions can deliver more immediate climate benefits than trying to control carbon dioxide, she said.

The paper was made freely available online today (Jan. 15) in the Journal of Geophysical Research-Atmospheres.
Some previous research had hinted that models were underestimating black-carbon emissions, Doherty said, from such things as open burning of forests, crops and grasslands, and from energy-related emissions in Southeast Asia and East Asia.

Black carbon’s role in climate is complex. Dark particles in the air work to shade the Earth’s surface while warming the atmosphere. Black carbon that settles on the surface of snow and ice darkens the surface to absorb more sunlight and increase melting. Finally, soot particles influence cloud formation in ways that can have either a cooling or warming impact.

The report surveyed past studies and included new research to quantify the sources of black carbon and better understand its overall effect on the climate.

Doherty was executive director of the International Global Atmospheric Chemistry Projectin 2009 when policy groups were seeking better information on the benefits of reducing black-carbon emissions. The research team undertook a comprehensive assessment, funded by IGAC and the U.S. National Oceanic and Atmospheric Administration.

“Because of a lack of action to reduce carbon dioxide emissions, the policy community is asking what else we can do, particularly to help places like the Arctic that are melting much more quickly than we had anticipated,” Doherty said. “We hope reducing black-carbon emissions buys us some time. But it doesn’t replace cutting back on CO2 emissions.”

While carbon dioxide has a half-life of 100 years, black carbon stays in the atmosphere for only a few days.

The authors investigated various sources of black carbon to see which reductions might have the most short-term cooling impact. Regulating emissions from diesel engines followed by replacing some wood- and coal-burning household stoves, authors find, would have the greatest immediate cooling impact.

“If you’re just thinking about impact on climate, you would want to be strategic about which sources you cut back on,” Doherty said. “We looked at the overall impact because some of these sources also emit associated particles that can have counteracting effects.”

Black carbon contributes to climate change in the mid to high latitudes, including the northern United States, Canada, northern Europe and northern Asia, as well as affecting rainfall patterns of the Asian Monsoon.

The report incorporates data that Doherty and co-author Stephen Warren, a UW professor of atmospheric sciences, gathered between 2007 and 2009 to measure soot on Arctic snow. Calculating black carbon deposits in the Arctic is difficult, so data are essential for testing and correcting models.

First author Tami Bond, now at the University of Illinois, earned a doctoral degree at the UW in 2000 that combined engineering, chemistry and atmospheric science to measure emissions from burning that have atmospheric importance.

“Mitigating black carbon is good for curbing short-term climate change, but to really solve the long-term climate problem, carbon dioxide emissions must also be reduced,” Bond said in a press release.

In related research, Doherty, Warren and UW graduate student Cheng Dang will travel next month to Colorado, Wyoming, the Dakotas, Saskatchewan, Manitoba and elsewhere to collect snow samples and investigate black carbon’s effects on North America’s Great Plains.

For more information, contact Doherty at 206-543-6674 or sarahd@atmos.washington.edu

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>