Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International study identifies gene variants associated with early heart attack

10.02.2009
Findings may improve understanding of underlying biology, determine preventive needs

The largest study ever completed of genetic factors associated with heart attacks has identified nine genetic regions – three not previously described – that appear to increase the risk for early-onset myocardial infarction.

The report from the Myocardial Infarction Genetics Consortium, based on information from a total of 26,000 inviduals in 10 countries, will appear in Nature Genetics and is receiving early online release.

"For several decades, it has been known that the risk for heart attack – the leading cause of death and disability in the U.S. – clusters in families and that some of this familial clustering is due to differences in DNA sequence," says Sekar Kathiresan, MD, director of Preventive Cardiology at Massachusetts General Hospital (MGH) and corresponding author of the Nature Genetics report. "We set out to find specific, single-letter differences in the genome, what are called single-nucleotide polomorphisms (SNPs), that may be responsible for an increased familial risk for heart attack."

Groundwork for the current study was laid more than 10 years ago when co-author Christopher O'Donnell, MD, now based at the Framingham Heart Study, began to gather data on patients treated at the MGH for early-onset heart attack – men under 50 and women under 60. Kathiresan soon joined the project, and in 2006 they formed the Myocardial Infarction Genetics Consortium along with David Altshuler, MD, PhD, of the MGH Center for Human Genetic Research and the Broad Institute of MIT and Harvard, eventually involving six groups around the world that had collected samples on a total of about 3,000 early-onset heart attack patients and 3,000 healthy controls.

The current study took advantage of several scientific tools developed over the past decade. These include the International Haplotype Map, a comprehensive map of SNPs across the genome; genotyping arrays that allow screening of hundreds of thousands of SNPs at once; and a gene chip developed by Altshuler's team that can simulaneously screen for SNPs and for copy-number variants – deletions or duplications of gene segments, a type of change associated with several disease categories. After analysis of the consortium's samples identified SNPs that could be associated with heart attack risk, the researchers ran replication screens in three independent groups of samples, resulting in a total of 13,000 heart attack patients and 13,000 controls.

Significant associations with the risk of early-onset heart attacks were found for common SNPs in nine genetic regions. Three of those associations with heart attack risk were identified for the first time; and one of the novel regions also had been found, in a separate study by O'Donnell, to promote the buildup of atherosclerotic plaque in the coronary arteries. To analyze the effect of inheriting several risk-associated SNPs, participants were assigned a genotype score, which revealed that those with the highest number of risk-associated variants had more than twice the risk of an early-onset heart attack as those with the fewest. No risk associations were identified with copy-number variants.

Although the increased risk associated with individual SNPs is small, knowledge gained from the association could prove extremely valuable. "One of the known variants we identified is at a gene called PCSK9, which was originally identified in 2003," explains Kathiresan, an assistant professor of Medicine at Harvard Medical School. "Extensive study of that gene region has led to significant insight into the biology of atherosclerosis and heart attack and to efforts to develop targeted drugs. We are optimistic that investigating the mechanics of the newly mapped variants could yield similar insights. And since we already have effective ways to reduce heart-attack risk, individuals at higher genetic risk may benefit from earlier intervention, something that needs to be tested in future studies."

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>