Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intermediate glucose control may be better than tight in neurocritical care patients

22.10.2012
A new study in BioMed Central's open access journal Critical Care suggests that intensive glycemic control does not reduce mortality in neurocritical care patients and could, in fact, lead to more neurological damage.

Complicating the picture, poor glucose control also leads to worse recovery and should be avoided. This study suggests that a strategy to maintain intermediate glucose levels would contribute to better outcomes in these patients.

Hyperglycemia and hypoglycemia are common in critically ill patients and are strongly associated with worse outcomes. This is particularly important for neurologically ill patients, for whom poor glycemic control could contribute to secondary neurological damage. Hyperglycemia is known to be very harmful in such patients, potentially leading to further brain damage andincreased mortality.

On the other hand, hypoglycemia could cause neuroglycopenia – a shortage of glucose in the brain – which can lead to loss of consciousness, brain damage and, in some cases, even death. For these reasons, the same optimal glycemic targets for general critical care patients may not apply for neurologically injured patients.

Numerous randomized controlled trials (RCTs) have assessed the efficacy and safety of intensive insulin therapy and tight glycemic control regimens for critically ill patients, though these largely focus on mortality as the primary outcome, rather than functional recovery, which would be a more meaningful endpoint for neurological patients.

With the aim of determining better glycemic targets for neurologically injured patients, a research group from the Department of Critical Care Medicine at the University of Calgary, Canada, performed a systematic review and meta-analysis of RCTs comparing intensive insulin therapy to conventional glycemic control, among patients with neurological injuries, including traumatic brain injury, ischemic or hemorrhagic stroke, anoxic encephalopathy, central nervous system infection or spinal cord injury.

Sixteen RCTs, a combined total of 1,248 neurocritical care patients, were included. In the trials, glycemic control targets with intensive insulin ranged from 70-140 mg/dl, while conventional protocols aimed to keep glucose levels below 144-300 mg/dl.

Consistent with the results of recent large multicenter RCTs in non-neurological patients, the authors found that intensive glucose control did not reduce mortality among their neurocritical care patients, but it did reduce the occurrence of poor neurological outcomes. However, intensive insulin therapy significantly increases the risk of hypoglycemia. A benefit was not observed when intensive treatment was compared with more intermediate glycemic targets of 110-180mg/dl.

According to lead author Andreas Kramer, "Tight glucose control doesn't appear to improve mortality in neurocritical care patients." He continued, "Very loose glucose control is associated with worse neurological recovery and should be avoided. Our results support targeting more intermediate glycemic goals."

Media Contact

Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Mob: +44 (0) 778 698 1967
Email: hilary.glover@biomedcentral.com
Notes
1. Optimal glycemic control in neurocritical care patients: a systematic review and meta-analysis Andreas H Kramer, Derek J Roberts and David A Zygun Critical Care (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request on the day of publication.

2. Critical Care is a high quality, peer-reviewed, international clinical medical journal. Critical Care aims to improve the care of critically ill patients by acquiring, discussing, distributing, and promoting evidence-based information relevant to intensivists.

3. BioMed Central is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector. @BioMedCentral

Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>