Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interferon might help asthma patients breathe easier

14.07.2010
An immune-system protein already used to treat diseases like multiple sclerosis, hepatitis C and a variety of cancers might also aid asthma patients, UT Southwestern Medical Center researchers have found.

The investigators determined that the protein interferon blocks the development of a population of immune cells known to cause asthma. These cells are members of a class of T lymphocytes, called T helper 2 cells, or Th2 cells.

Under normal circumstances, Th2 cells help protect against infections by secreting chemicals that induce inflammation; however, in some individuals, these Th2 cells can also promote allergic responses to normally harmless substances, including animal dander, pollens and pollutants. Once Th2 cells become reactive to these substances, they promote all of the inflammatory processes common to allergic diseases like asthma and atopic dermatitis.

The findings, available online and in the July 15 issue of the Journal of Immunology, suggest that interferon might be a valuable and readily available therapy for individuals with asthma.

"This finding is incredibly important, because humans are being treated with interferon for a variety of diseases, yet no one has tried treating asthma patients with interferon," said Dr. J. David Farrar, assistant professor of immunology and molecular biology at UT Southwestern and senior author of the study. "The current therapies for asthma are inhalers and steroids, both of which offer only temporary relief."

Asthma results in approximately 200,000 pediatric hospitalizations each year, more than for any other childhood disease. About 20 million people have been diagnosed with asthma in the U.S.

In the current study, the researchers showed in isolated human cells that interferon blocks the development of nascent Th2 cells and inhibits cells that already have become Th2 cells by interfering with a regulatory protein called GATA3, a transcription factor Th2 cells express to regulate their function.

"Interferon is blocking the development of these cells and their stability, and it's doing this by targeting the very transcription factor that regulates their development and stability in the first place," Dr. Farrar said. "By targeting this transcription factor, we've turned off the key component that regulates the entire process."

The findings, he said, provide proof-of-principle that targeting this particular group of cells with interferon might be an effective therapy for those with asthma.

"The study has confirmed that it's the Th2 cells that you really want to target," he said. "If you can stop a Th2 cell from ever developing, and if you can take a Th2 cell that has already become one and stop it from secreting these asthma-causing chemicals, then that's really the 'Holy Grail' of treating asthma."

The next step, Dr. Farrar said, is to study whether interferon will prevent Th2 cells taken straight from asthma patients from secreting the chemicals known to induce asthma.

"If interferon works against these cells, I think that would be an excellent basis for beginning a clinical trial and treating asthma patients," Dr. Farrar said. "We've been treating humans with interferon for a long time, so we don't have to go through early-phase safety trials. We already have information about its toxicity."

Other UT Southwestern researchers involved in the study were Jonathan Huber, lead author and student research assistant in immunology; Hilario Ramos, former student research assistant in immunology; and Dr. Michelle Gill, assistant professor of pediatrics and internal medicine.

The study was funded by the National Institutes of Health and Exxon Mobil Corp.

Visit http://www.utsouthwestern.org/allergy to learn more about UT Southwestern's clinical services for asthma and allergies.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>