Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interferon might help asthma patients breathe easier

14.07.2010
An immune-system protein already used to treat diseases like multiple sclerosis, hepatitis C and a variety of cancers might also aid asthma patients, UT Southwestern Medical Center researchers have found.

The investigators determined that the protein interferon blocks the development of a population of immune cells known to cause asthma. These cells are members of a class of T lymphocytes, called T helper 2 cells, or Th2 cells.

Under normal circumstances, Th2 cells help protect against infections by secreting chemicals that induce inflammation; however, in some individuals, these Th2 cells can also promote allergic responses to normally harmless substances, including animal dander, pollens and pollutants. Once Th2 cells become reactive to these substances, they promote all of the inflammatory processes common to allergic diseases like asthma and atopic dermatitis.

The findings, available online and in the July 15 issue of the Journal of Immunology, suggest that interferon might be a valuable and readily available therapy for individuals with asthma.

"This finding is incredibly important, because humans are being treated with interferon for a variety of diseases, yet no one has tried treating asthma patients with interferon," said Dr. J. David Farrar, assistant professor of immunology and molecular biology at UT Southwestern and senior author of the study. "The current therapies for asthma are inhalers and steroids, both of which offer only temporary relief."

Asthma results in approximately 200,000 pediatric hospitalizations each year, more than for any other childhood disease. About 20 million people have been diagnosed with asthma in the U.S.

In the current study, the researchers showed in isolated human cells that interferon blocks the development of nascent Th2 cells and inhibits cells that already have become Th2 cells by interfering with a regulatory protein called GATA3, a transcription factor Th2 cells express to regulate their function.

"Interferon is blocking the development of these cells and their stability, and it's doing this by targeting the very transcription factor that regulates their development and stability in the first place," Dr. Farrar said. "By targeting this transcription factor, we've turned off the key component that regulates the entire process."

The findings, he said, provide proof-of-principle that targeting this particular group of cells with interferon might be an effective therapy for those with asthma.

"The study has confirmed that it's the Th2 cells that you really want to target," he said. "If you can stop a Th2 cell from ever developing, and if you can take a Th2 cell that has already become one and stop it from secreting these asthma-causing chemicals, then that's really the 'Holy Grail' of treating asthma."

The next step, Dr. Farrar said, is to study whether interferon will prevent Th2 cells taken straight from asthma patients from secreting the chemicals known to induce asthma.

"If interferon works against these cells, I think that would be an excellent basis for beginning a clinical trial and treating asthma patients," Dr. Farrar said. "We've been treating humans with interferon for a long time, so we don't have to go through early-phase safety trials. We already have information about its toxicity."

Other UT Southwestern researchers involved in the study were Jonathan Huber, lead author and student research assistant in immunology; Hilario Ramos, former student research assistant in immunology; and Dr. Michelle Gill, assistant professor of pediatrics and internal medicine.

The study was funded by the National Institutes of Health and Exxon Mobil Corp.

Visit http://www.utsouthwestern.org/allergy to learn more about UT Southwestern's clinical services for asthma and allergies.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>