Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interferon might help asthma patients breathe easier

14.07.2010
An immune-system protein already used to treat diseases like multiple sclerosis, hepatitis C and a variety of cancers might also aid asthma patients, UT Southwestern Medical Center researchers have found.

The investigators determined that the protein interferon blocks the development of a population of immune cells known to cause asthma. These cells are members of a class of T lymphocytes, called T helper 2 cells, or Th2 cells.

Under normal circumstances, Th2 cells help protect against infections by secreting chemicals that induce inflammation; however, in some individuals, these Th2 cells can also promote allergic responses to normally harmless substances, including animal dander, pollens and pollutants. Once Th2 cells become reactive to these substances, they promote all of the inflammatory processes common to allergic diseases like asthma and atopic dermatitis.

The findings, available online and in the July 15 issue of the Journal of Immunology, suggest that interferon might be a valuable and readily available therapy for individuals with asthma.

"This finding is incredibly important, because humans are being treated with interferon for a variety of diseases, yet no one has tried treating asthma patients with interferon," said Dr. J. David Farrar, assistant professor of immunology and molecular biology at UT Southwestern and senior author of the study. "The current therapies for asthma are inhalers and steroids, both of which offer only temporary relief."

Asthma results in approximately 200,000 pediatric hospitalizations each year, more than for any other childhood disease. About 20 million people have been diagnosed with asthma in the U.S.

In the current study, the researchers showed in isolated human cells that interferon blocks the development of nascent Th2 cells and inhibits cells that already have become Th2 cells by interfering with a regulatory protein called GATA3, a transcription factor Th2 cells express to regulate their function.

"Interferon is blocking the development of these cells and their stability, and it's doing this by targeting the very transcription factor that regulates their development and stability in the first place," Dr. Farrar said. "By targeting this transcription factor, we've turned off the key component that regulates the entire process."

The findings, he said, provide proof-of-principle that targeting this particular group of cells with interferon might be an effective therapy for those with asthma.

"The study has confirmed that it's the Th2 cells that you really want to target," he said. "If you can stop a Th2 cell from ever developing, and if you can take a Th2 cell that has already become one and stop it from secreting these asthma-causing chemicals, then that's really the 'Holy Grail' of treating asthma."

The next step, Dr. Farrar said, is to study whether interferon will prevent Th2 cells taken straight from asthma patients from secreting the chemicals known to induce asthma.

"If interferon works against these cells, I think that would be an excellent basis for beginning a clinical trial and treating asthma patients," Dr. Farrar said. "We've been treating humans with interferon for a long time, so we don't have to go through early-phase safety trials. We already have information about its toxicity."

Other UT Southwestern researchers involved in the study were Jonathan Huber, lead author and student research assistant in immunology; Hilario Ramos, former student research assistant in immunology; and Dr. Michelle Gill, assistant professor of pediatrics and internal medicine.

The study was funded by the National Institutes of Health and Exxon Mobil Corp.

Visit http://www.utsouthwestern.org/allergy to learn more about UT Southwestern's clinical services for asthma and allergies.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

Kristen Holland Shear | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>