Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interfaces for tomorrow’s manufacturing

11.06.2013
A trend study identifies the potential for humans and technology to interact in a manufacturing environment

Fraunhofer IAO has looked into the effects that developments in the field of manufacturing will have on the interface between humans and technology. The study highlights the potential for future-proof human-machine interfaces (HMIs) and discusses the challenges that will have to be overcome in designing tomorrow’s HMIs and HMI engineering tools.

Human-machine interfaces (HMIs) are absolutely central to production processes, and as such they have a major influence on the quality and efficiency of industrial manufacturing. HMIs not only make it possible to control and monitor facilities, they also provide valuable information on those facilities’ operational status.

Current and future developments in manufacturing – including the changes referred to as Industry 4.0 – will also affect the role played by the interaction between humans and technology. While the growing connectivity and intelligence of systems promise greater flexibility in processes, they also have the effect of increasing complexity. This makes it all the more important to involve the future users of an HMI early on in its development.

Fraunhofer IAO has completed a trend study to identify and explore the key areas for action to ensure humans can interact with technology in tomorrow’s manufacturing. In particular the study considers all aspects of ergonomic HMI design as well as how to integrate new technologies such as interactive and recognition technologies or social media. Since HMIs are often produced using special development tools, the study also looks into the functionalities and opportunities such tools can provide.

One point the study makes is that while development work is simplified by certain tools offering standard functionalities such as SCADA (supervisory control and data acquisition), these tools can restrict the range of design possibilities for the HMI. Using the right HMI tool, however, can in itself bring significant benefits in terms of innovation. With manufacturing environments in flux, what is needed is a set of future-proof HMI developer tools along with a detailed analysis of the design possibilities.

The content of the study is drawn primarily from workshops and interviews with relevant experts from the areas of manufacturing operations, IT, and the interaction between humans and technology. In order to make the results of the study as readily applicable in practice as possible, the experts approached came not only from the scientific community but also from industry. The study highlights the changes that the manufacturing sector is about to undergo as well as the challenges this presents for the design of interfaces between humans and technology.

In addition to offering specific measures and guidelines for how to design powerful HMIs, the study recommends selection criteria for the necessary engineering tools. These can serve as an aid both in designing and developing appealing HMIs and efficient engineering tools and in adopting a suitable future-proof HMI engineering environment.

Matthias Peissner | Fraunhofer IAO
Further information:
http://www.iao.fraunhofer.de/lang-en/business-areas/information-communication-technology/1054-interfaces-for-tomorrows-manufacturing.ht

Further reports about: HMI IAO Social Media human-machine interfaces production process

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>