Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Interfaces for tomorrow’s manufacturing

11.06.2013
A trend study identifies the potential for humans and technology to interact in a manufacturing environment

Fraunhofer IAO has looked into the effects that developments in the field of manufacturing will have on the interface between humans and technology. The study highlights the potential for future-proof human-machine interfaces (HMIs) and discusses the challenges that will have to be overcome in designing tomorrow’s HMIs and HMI engineering tools.

Human-machine interfaces (HMIs) are absolutely central to production processes, and as such they have a major influence on the quality and efficiency of industrial manufacturing. HMIs not only make it possible to control and monitor facilities, they also provide valuable information on those facilities’ operational status.

Current and future developments in manufacturing – including the changes referred to as Industry 4.0 – will also affect the role played by the interaction between humans and technology. While the growing connectivity and intelligence of systems promise greater flexibility in processes, they also have the effect of increasing complexity. This makes it all the more important to involve the future users of an HMI early on in its development.

Fraunhofer IAO has completed a trend study to identify and explore the key areas for action to ensure humans can interact with technology in tomorrow’s manufacturing. In particular the study considers all aspects of ergonomic HMI design as well as how to integrate new technologies such as interactive and recognition technologies or social media. Since HMIs are often produced using special development tools, the study also looks into the functionalities and opportunities such tools can provide.

One point the study makes is that while development work is simplified by certain tools offering standard functionalities such as SCADA (supervisory control and data acquisition), these tools can restrict the range of design possibilities for the HMI. Using the right HMI tool, however, can in itself bring significant benefits in terms of innovation. With manufacturing environments in flux, what is needed is a set of future-proof HMI developer tools along with a detailed analysis of the design possibilities.

The content of the study is drawn primarily from workshops and interviews with relevant experts from the areas of manufacturing operations, IT, and the interaction between humans and technology. In order to make the results of the study as readily applicable in practice as possible, the experts approached came not only from the scientific community but also from industry. The study highlights the changes that the manufacturing sector is about to undergo as well as the challenges this presents for the design of interfaces between humans and technology.

In addition to offering specific measures and guidelines for how to design powerful HMIs, the study recommends selection criteria for the necessary engineering tools. These can serve as an aid both in designing and developing appealing HMIs and efficient engineering tools and in adopting a suitable future-proof HMI engineering environment.

Matthias Peissner | Fraunhofer IAO
Further information:
http://www.iao.fraunhofer.de/lang-en/business-areas/information-communication-technology/1054-interfaces-for-tomorrows-manufacturing.ht

Further reports about: HMI IAO Social Media human-machine interfaces production process

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Porous crystalline materials: TU Graz researcher shows method for controlled growth

07.12.2016 | Materials Sciences

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>