Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel insights into the pathogenesis of Parkinson's disease

26.01.2010
In a study carried out within the context of the National Genome Research Network(NGFN) scientists from the Hertie-Institute for Clinical Brain Research (HIH) at the University Hospital of Tübingen, Germany, were able to show, for the first time, that the two proteins associated with Parkinson's disease (PD), PINK1 and Parkin, together control the selective removal of damaged mitochondria from cells. The study also explains how this is achieved. The scientists from Tübingen assume that a disruption of the identified mitochondrial clearance mechanism may result in the pathogenesis of PD. (Advance online publication in Nature Cell Biology 24 January 2010)

Mitochondria, the cellular power plants, are important organelles that support the cells with chemical energy required for many cellular functions. Damaged mitochondria, however, do not produce energy anymore, but rather result in a tremendous increase of harmful oxidative stress that eventually can lead to cell death.

The selective disposal of damaged mitochondria allows a cleanup of the cell and thereby protects from the devastating consequences of mitochondrial dysfunction. In the present study, the team of Dr. Wolfdieter Springer and Prof. Dr. Philipp Kahle for the first time shows how this disposal mechanism works: Both PD-associated proteins, PINK1 and Parkin, cooperate together in order to mark damaged mitochondria for degradation via attachment of the small protein ubiquitin to a channel protein of the mitochondrial outer membrane.

This ubiquitin label serves as a signal for the cell to remove the damaged mitochondria by a "self-eating" process called autophagy (mitochondrial autophagy or mitophagy). Absence of either functional PINK1 or Parkin protein results in a disruption of this important pathway. Thus, perturbations of this disposal mechanism may play a crucial role in the pathogenesis of PD. "The insights gained herein may now provide the basis for the development of therapeutic strategies that prevent PD and other related neurodegenerative diseases by targeting dysfunctional mitochondria for selective autophagy", says Dr. Wolfdieter Springer, leader of the present study.

The scientists now show that PD-associated mutations abrogate the apparently sequential process of mitophagy at distinct steps. The enzymatic function of the mitochondrially localized kinase PINK1 is thereby essential and promotes a fast recruitment of Parkin from its uniform distribution in the cytoplasm to damaged mitochondria. The ubiquitin ligase Parkin, in turn, is required for the attachment of ubiquitin to VDAC1. The identified ubiquitin-label of VDAC1 is then detected by the ubiquitin/autophagic adaptor protein p62/SQSTM1 that targets the damaged organelle as a whole to the autophagic machinery. Interestingly, VDAC1 forms a channel through the outer mitochondrial membrane and has already been suspected to contribute to cell death resulting from mitochondrial damage.

Mitochondrial disturbances as well as disruption of protein degradation pathways have both been associated with the pathogenesis of PD, and PINK1 and Parkin play important roles in these processes. The elucidation of the mitochondrial degradation pathway mediated by PINK1 and Parkin in the present study now provides a functional link between both cellular dysfunctions implicated in the pathogenesis of PD and other neurodegenerative diseases.

Titel of the original publication:
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
Authors: Sven Geisler, Kira M. Holmström, Diana Skujat, Fabienne C. Fiesel, Oliver C. Rothfuss, Philipp J. Kahle und Wolfdieter Springer

Nature Cell Biology advance online publication 24 January 2010, http://dx.doi.org/10.1038/ncb2012

Contact:
University of Tübingen, Germany
Hertie-Institute for Clinical Brain Research (HIH)
Cooperation partner German Centre for Neurodegenerative Diseases (DZNE)
Dr. Wolfdieter Springer
Phone: +49 (0) 7071 29 82038
Email: wolfdieter.springer@klinikum.uni-tuebingen.de
and
Prof. Dr. Philipp Kahle
Phone: +49 (0)7071 29 81970
Email: philipp.kahle@uni-tuebingen.de
http://www.hih-tuebingen.de
Hertie-Institute for Clinical Brain Research (HIH)
Press Officer
Kirstin Ahrens
Phone.: +49 (0)7073-500 724, Mobile: 0173/300 53 96
Email : mail@kirstin-ahrens.de
University Hospital Tübingen
Press Officer
Dr. Ellen Katz
Phone: +49 (0)7071-2980112
Email: ellen.katz@med.uni-tuebingen.de

Kirstin Ahrens | idw
Further information:
http://www.hih-tuebingen.de
http://dx.doi.org/10.1038/ncb2012

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>