Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel insights into the pathogenesis of Parkinson's disease

26.01.2010
In a study carried out within the context of the National Genome Research Network(NGFN) scientists from the Hertie-Institute for Clinical Brain Research (HIH) at the University Hospital of Tübingen, Germany, were able to show, for the first time, that the two proteins associated with Parkinson's disease (PD), PINK1 and Parkin, together control the selective removal of damaged mitochondria from cells. The study also explains how this is achieved. The scientists from Tübingen assume that a disruption of the identified mitochondrial clearance mechanism may result in the pathogenesis of PD. (Advance online publication in Nature Cell Biology 24 January 2010)

Mitochondria, the cellular power plants, are important organelles that support the cells with chemical energy required for many cellular functions. Damaged mitochondria, however, do not produce energy anymore, but rather result in a tremendous increase of harmful oxidative stress that eventually can lead to cell death.

The selective disposal of damaged mitochondria allows a cleanup of the cell and thereby protects from the devastating consequences of mitochondrial dysfunction. In the present study, the team of Dr. Wolfdieter Springer and Prof. Dr. Philipp Kahle for the first time shows how this disposal mechanism works: Both PD-associated proteins, PINK1 and Parkin, cooperate together in order to mark damaged mitochondria for degradation via attachment of the small protein ubiquitin to a channel protein of the mitochondrial outer membrane.

This ubiquitin label serves as a signal for the cell to remove the damaged mitochondria by a "self-eating" process called autophagy (mitochondrial autophagy or mitophagy). Absence of either functional PINK1 or Parkin protein results in a disruption of this important pathway. Thus, perturbations of this disposal mechanism may play a crucial role in the pathogenesis of PD. "The insights gained herein may now provide the basis for the development of therapeutic strategies that prevent PD and other related neurodegenerative diseases by targeting dysfunctional mitochondria for selective autophagy", says Dr. Wolfdieter Springer, leader of the present study.

The scientists now show that PD-associated mutations abrogate the apparently sequential process of mitophagy at distinct steps. The enzymatic function of the mitochondrially localized kinase PINK1 is thereby essential and promotes a fast recruitment of Parkin from its uniform distribution in the cytoplasm to damaged mitochondria. The ubiquitin ligase Parkin, in turn, is required for the attachment of ubiquitin to VDAC1. The identified ubiquitin-label of VDAC1 is then detected by the ubiquitin/autophagic adaptor protein p62/SQSTM1 that targets the damaged organelle as a whole to the autophagic machinery. Interestingly, VDAC1 forms a channel through the outer mitochondrial membrane and has already been suspected to contribute to cell death resulting from mitochondrial damage.

Mitochondrial disturbances as well as disruption of protein degradation pathways have both been associated with the pathogenesis of PD, and PINK1 and Parkin play important roles in these processes. The elucidation of the mitochondrial degradation pathway mediated by PINK1 and Parkin in the present study now provides a functional link between both cellular dysfunctions implicated in the pathogenesis of PD and other neurodegenerative diseases.

Titel of the original publication:
PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1
Authors: Sven Geisler, Kira M. Holmström, Diana Skujat, Fabienne C. Fiesel, Oliver C. Rothfuss, Philipp J. Kahle und Wolfdieter Springer

Nature Cell Biology advance online publication 24 January 2010, http://dx.doi.org/10.1038/ncb2012

Contact:
University of Tübingen, Germany
Hertie-Institute for Clinical Brain Research (HIH)
Cooperation partner German Centre for Neurodegenerative Diseases (DZNE)
Dr. Wolfdieter Springer
Phone: +49 (0) 7071 29 82038
Email: wolfdieter.springer@klinikum.uni-tuebingen.de
and
Prof. Dr. Philipp Kahle
Phone: +49 (0)7071 29 81970
Email: philipp.kahle@uni-tuebingen.de
http://www.hih-tuebingen.de
Hertie-Institute for Clinical Brain Research (HIH)
Press Officer
Kirstin Ahrens
Phone.: +49 (0)7073-500 724, Mobile: 0173/300 53 96
Email : mail@kirstin-ahrens.de
University Hospital Tübingen
Press Officer
Dr. Ellen Katz
Phone: +49 (0)7071-2980112
Email: ellen.katz@med.uni-tuebingen.de

Kirstin Ahrens | idw
Further information:
http://www.hih-tuebingen.de
http://dx.doi.org/10.1038/ncb2012

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>