Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Input-output trade-offs found in human information processing

17.08.2010
The most beautiful thing about humans, says Indiana University researcher S. Lee Hong, is that they are both ever-changing and sometimes prone to error. Yet humans are still extremely flexible and adaptable, managing the transition from one context to another almost seamlessly. His new study demonstrates how this adaptability boils down to a zero-sum game.

"There's a famous Einstein quote: 'God does not play dice.' Unfortunately, we all have to do so every day," said Hong, assistant professor in IU's School of Health, Physical Education and Recreation. "Humans are unpredictably variable organisms living in fundamentally unpredictable and uncertain environments. Humans are capable of adapting to different levels of uncertainty, which is quite well documented, but 'how' has been unknown up to this time."

Hong's study, published in PLoS One, involves information processing and found that human behavior is systematic, not random, demonstrating a trade-off between input and out. The study also points to limitations to information processing, Hong said.

The paper can be found at http://www.plosone.org/article/info:doi/10.1371/journal.pone.0011461

Hong and his co-author, Melissa R. Beck, cognitive psychology professor at Louisiana State University, studied eye movement and response times to stimuli sequences that included varying levels of uncertainty or unpredictability. When the researchers increased the uncertainty in the environment by having images on a computer monitor appear in different locations in irregular intervals, the uncertainty of study participants' scanning patterns decreased. When the "input," or the objects' appearances became more regular or predictable, the level of uncertainty of the study participants' "output," or scanning behavior increased.

Hong uses a desk as an example. If someone needs to find a note on a desk with little clutter, his search need not be thorough. He can effectively glance around the desk to find what he wants. If the desk is messy or contains many papers and other objects, his search will need to be more systematic to find what he is looking for to make sure he hasn't missed anything. If he ransacked the desk in a random fashion, it likely would take longer to find the note.

"These exchanges are pretty much equal and opposite, much like the laws of the conservation of momentum and energy," Hong said. "More importantly, it seems that the human organism is fundamentally in tune with patterns of uncertainty, evolved, maybe. It's definitely a question for the future."

The study involved 29 college students. They generated repeated responses to a continuous series of visual stimuli presented on a computer monitor. As soon as a target was detected, they pressed a keypad. The researchers manipulated where and when the targets would appear. The more uncertain the time and place of the stimulus, the more systematic the visual search strategy was. On the other hand, their response times became much more unpredictable. The most interesting finding, said Hong, was that the changes in uncertainty of the eye movements were a virtual mirror image of the changes in uncertainty in the response times.

"The results show that the subjects adapted their visual search behavior to adjust to the different levels of stimulus uncertainty," the authors wrote in their paper.

Hong also is an associate member of IU's Cognitive Science Program and a full member of the Neuroscience Program, both in the College of Arts and Sciences. His research focuses on patterns of change in movement behavior.

To speak with Hong, contact Tracy James
at 812-855-0084 and traljame@indiana.edu

Tracy James | EurekAlert!
Further information:
http://www.indiana.edu
http://newsinfo.iu.edu/news/page/normal/15199.html

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>