Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovation in renewable-energy technologies is booming

14.10.2013
New study shows that research investments and growing markets have fueled a huge rise in new patents

The number of patents issued for renewable-energy technologies has risen sharply over the last decade, according to new research from MIT and the Santa Fe Institute (SFI). The study shows that investments in research and development, as well as in the growth of markets for these products, have helped to spur this dramatic growth in innovation.

"We were quite surprised," says Jessika Trancik, an assistant professor of engineering systems at MIT and a co-author of the new report, published in the journal PLoS ONE. Trancik -- working with Luís Bettencourt of SFI and graduate student Jasleen Kaur from Indiana University -- created a database of energy-related patents issued in more than 100 countries between 1970 and 2009, using keyword searches of the patents themselves, rather than the classifications assigned by patent offices. In all, the team examined more than 73,000 patents issued for energy-related technologies.

This database "gives you a view into innovation activity -- who's doing it, and where," Trancik says. Further statistical analysis, she says, showed a clear correlation between this rise in patents and prior investments in R&D, along with growth in the markets for such renewable technologies.

The increase was most dramatic in patents related to renewable energy, chiefly solar energy and wind. Patents in fossil-fuel technologies showed a more modest increase, while those in nuclear technology were flat.

For example, between 2004 and 2009, the number of patents issued annually for solar energy increased by 13 percent per year, while those for wind energy increased 19 percent per year, on average; these growth rates approach or exceed the rates for technologies such as semiconductors and digital communications. Overall, renewable-energy patents in the United States increased from fewer than 200 per year in the period from 1975 to 2000 to more than 1,000 annually by 2009. By comparison, there were about 300 fossil-fuel-related patents in 2009, up from about 100 a year in earlier decades. The fraction of all patents accounted for by energy is also increasing.

While there was a large increase in research funding in these fields following the oil shocks of the 1970s and 1980s, that was followed by a steep dropoff. But the effect of those investments is visible in the current patent boom, Trancik says. "Knowledge persists," she says. "A lot of work was done in the '70s and '80s, a lot of effort was put in, and we're still benefitting from that."

Trancik says the team saw the cumulative effect of investment in research, by both governments and industry, and the effect of growth in the market for renewable-energy systems -- which also benefitted from government subsidies, incentives and tax breaks.

The trends were similar in the United States and elsewhere, although there were regional differences, Trancik says. While China has sometimes been accused of taking advantage of technologies invented elsewhere, and innovating mainly in production processes, the new data paint a different picture: Patents filed in China for renewable-energy technology (which includes patents filed by foreign inventors or companies) have shown dramatic growth over the last few years. "China's really taking off," Trancik says, adding that "understanding the nature of the technological development represented requires a close look at patent content."

The cumulative, long-term effect of research investment is another significant finding from this study, she says. Investments tend to come in cycles, she says, "so this persistence of knowledge is significant -- and comforting, in a way."

Both investment in basic research and investment in implementation of technologies play an important role, Trancik says. "The data really show the importance of this, of the two forms of investment working together," she says.

For example, in the case of well-established consumer technologies, such as computers, the transition to implementation by industry can be swift. But for other less-established or less-visible technologies, this process can take longer.

"Improving something that's not valued in the market … requires more investment," Trancik says. A lighter laptop, or one with a longer battery life, provides an obvious benefit to the consumer, "whereas a consumer wouldn't notice when turning on the lights whether there's more or less carbon emissions." That's where government regulations and investments can help jump-start new technology, she says.

Bettencourt adds that new technologies often require a long time to develop, and public investment is crucial at that early stage, allowing the technology to take off as markets kick in. "This has happened with many familiar technologies, such as cell phones, so we wanted to better understand if it may be about to happen to new energy technologies," he says.

The research was supported by the Army Research Office, the Los Alamos National Laboratory, the National Science Foundation and the Solomon Buchsbaum Research Fund.

Written by David Chandler, MIT News Office

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>