Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Influenza virus strains show increasing drug resistance and ability to spread

07.12.2010
Studies highlight need for new antiviral treatment options and strategies

Two new studies raise public health concerns about increasing antiviral resistance among certain influenza viruses, their ability to spread, and a lack of alternative antiviral treatment options.

The findings are published in the January 1 issue of The Journal of Infectious Diseases. (Please see below for links to these articles online.)

Influenza viruses are treated with two classes of drugs: M2 blockers (adamantanes) and neuraminidase inhibitors (NAIs), including oseltamivir and zanamivir. While the spread of influenza strains with resistance to one class of drugs has been well documented in recent years, a new report from Larisa Gubareva, MD, PhD and colleagues at the Centers for Disease Control and Prevention (CDC) and at health agencies in West Virginia, Texas, and Canada, confirms that dual resistance can emerge in several ways and has been on the rise during the past three years.

The study analyzed 28 seasonal H1N1 viruses with dual resistance from 2008 to 2010 from five countries, revealing that additional antiviral resistance could rapidly develop in a previously single-resistant strain as a result of mutation, drug response, or gene exchange with another virus.

Although dual resistant viruses are still rare, the investigators noted an increase in the number of tested viruses with this resistance, from 0.06 percent (2007-2008) to 1.5 percent (2008-2009) to 28 percent (2009-2010); however, during the 2009-2010 season the number of circulating seasonal H1N1 viruses was low, and only 25 viruses were tested. "Because only two classes of antiviral agents are approved, the detection of viruses with resistance to drugs in both classes is concerning," said Dr. Gubareva. "If circulation of viruses with dual resistance becomes more widespread among any of the predominant circulating influenza A viruses, treatment options will be extremely limited. New antiviral agents and strategies for antiviral therapy are likely to be necessary in the future."

A second study, conducted by Catherine Moore and colleagues in the United Kingdom, examined an outbreak of oseltamivir resistant (OR) pandemic H1N1 infection in a hematology unit in the UK. The study is the first to confirm person-to-person transmission of this dually resistant strain through molecular epidemiologic methods. The 2009 pandemic H1N1 virus was inherently resistant to adamantine, but was susceptible to and treated with oseltamivir. However, by October 2009, emergence of OR H1N1 had been documented in rare patients on oseltamivir therapy.

In the hematology unit that Moore and colleagues studied, eight of the 11 pandemic H1N1 virus infections were resistant to oseltamivir, with half of those cases resulting from direct transmission of the resistant virus. Immunocompromised patients were more susceptible to the emergence of OR H1N1 virus on treatment and also transmitted the virus to others, despite often having no influenza symptoms or having completed antiviral therapy. As a result, the screening of patients for OR H1N1 viruses became particularly important, and treatment guidelines were altered to include treatment with zanamivir, to which the viruses remained susceptible.

"These findings suggest that oseltamivir may not be the frontline drug of choice in hematology patients, and zanamivir may prove to be more beneficial," the study authors wrote. "Guidelines may need to be changed to include active screening for the [OR] mutation in hematology patients diagnosed with H1N1 and other patients who are immunocompromised when oseltamivir is used." If high risk groups are more actively monitored, early diagnosis will help prevent the spread of H1N1 viruses, and proper screening for infection and resistance will aid in making proper therapeutic decisions.

In an accompanying editorial, Frederick G. Hayden, MD, of the University of Virginia School of Medicine, and Menno D. de Jong, MD, of the University of Amsterdam in the Netherlands, agreed that increasingly detailed monitoring and creative preventive and therapeutic choices will be required as unpredictable and antiviral-resistant influenza viruses continue to appear. This is especially true "given our current paucity of therapeutic choices," according to the authors. With only two drug classes approved in the U.S. and most countries for treating influenza virus, future research should focus on the effectiveness of zanamivir and combination antiviral therapy and the need to develop new antivirals with unique mechanisms of action.

"Such information will ensure rapid development and testing of alternative antiviral strategies for use in immunocompromised hosts and seriously ill hospitalized patients to address their unmet medical needs and the associated public health concerns, particularly the continuing threat of antiviral resistance," the authors conclude.

The studies and the accompanying editorial are available online. They are embargoed until 2 p.m. EST on Tuesday, Dec. 7, 2010:

"Dual Resistance to Adamantanes and Oseltamivir Among Seasonal Influenza A (H1N1) Viruses: 2008-2010"

http://www.oxfordjournals.org/our_journals/jid/jiq005.pdf

"Evidence of Person to Person Transmission of Oseltamivir Resistant Pandemic Influenza A (H1N1) 2009 Virus in a Hematology Unit"

http://www.oxfordjournals.org/our_journals/jid/jiq007.pdf

"Emerging Influenza Antiviral Resistance Threats"
http://www.oxfordjournals.org/our_journals/jid/jiq012.pdf
Founded in 1904, The Journal of Infectious Diseases is the premier publication in the Western Hemisphere for original research on the pathogenesis, diagnosis, and treatment of infectious diseases; on the microbes that cause them; and on disorders of host immune mechanisms. Articles in JID include research results from microbiology, immunology, epidemiology, and related disciplines. It is published under the auspices of the Infectious Diseases Society of America (IDSA). Based in Arlington, Va., IDSA is a professional society representing more than 9,000 physicians and scientists who specialize in infectious diseases.

John Heys | EurekAlert!
Further information:
http://www.idsociety.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>