Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infectious diseases and climate change intersect with no simple answers

13.08.2013
Study highlights challenges of predicting disease outcomes in a warming world

Climate change is already affecting the spread of infectious diseases--and human health and biodiversity worldwide--according to disease ecologists reporting research results in this week's issue of the journal Science.

Modeling disease outcomes from host and parasite responses to climate variables, they say, could help public health officials and environmental managers address the challenges posed by the changing landscape of infectious disease.

"Earth's changing climate and the global spread of infectious diseases are threatening human health, agriculture and wildlife," said Sam Scheiner, National Science Foundation (NSF) program director for the joint NSF-National Institutes of Health Ecology and Evolution of Infectious Diseases Program, which funded the research.

"Solving these problems requires a comprehensive approach that unites scientists from biology, the geosciences and the social sciences."

According to lead author Sonia Altizer of the University of Georgia, the issue of climate change and disease has provoked intense debate over the last decade, particularly in the case of diseases that affect humans.

In the Science paper, Altizer and her colleagues--Richard Ostfeld of the Cary Institute of Ecosystem Studies; Pieter Johnson of the University of Colorado; Susan Kutz of the University of Calgary and Canadian Cooperative Wildlife Health Centre; and Drew Harvell of Cornell University--laid out an agenda for future research and action.

"For a lot of human diseases, responses to climate change depend on the wealth of nations, healthcare infrastructure, and the ability to take mitigating measures," Altizer said.

"The climate signal, in many cases, is hard to tease apart from other factors like vector control, and vaccine and drug availability."

In diseases affecting wildlife and agricultural ecosystems, however, findings show that climate warming is already causing changes.

"In many cases, we're seeing an increase in disease and parasitism," Altizer said. "But the effect of climate change on these disease relationships depends on the physiology of the organisms and on the structure of natural communities."

At the organism level, climate change can alter the physiology of parasites. Some of the clearest examples are found in the Arctic, where temperatures are rising rapidly. Parasites are developing faster as a result. A lungworm that affects muskoxen, for instance, may be transmitted over a longer period each summer, making it a more serious problem for the populations it infects.

Climate change is also affecting entire plant and animal communities.

Community-level responses to rising temperatures are evident in tropical marine environments such as the coral reef ecosystems of the Caribbean. Warmer water temperatures have directly stressed corals and facilitated infections by pathogenic fungi and bacteria. When corals succumb, other species that depend on them are affected.

The potential consequences of these changes are serious. The combination of warmer temperatures and altered disease patterns is placing growing numbers of species at risk of extinction, the scientists say.

In human health, there is a direct risk from pathogens like dengue, malaria and cholera. All are linked to warmer temperatures.

Indirect risks also exist in threats to agricultural systems and game species that are crucial for subsistence and cultural activities.

The scientists recommend building on and expanding data on the physiological responses of hosts and parasites to temperature change. Those mechanisms may offer clues to how a system will respond to climate warming.

"We'd like to be able to predict, for example, that if the climate warms by a certain amount, then in a particular host-parasite system we might see an increase from one to two disease transmission cycles each year," Altizer said.

"But we'd also like to try to tie these predictions to actions that might be taken."

Some of those actions might involve more monitoring and surveillance, adjusting the timing of vector control measures and adopting new management measures.

These could include, for instance, closing coral reefs to human activity if a disease outbreak is predicted, or changing the planting strategy for crops to compensate for unusually high risks of certain diseases.

The researchers also point out that certain local human communities, such as those of indigenous peoples in the Arctic, could be disproportionately affected by climate-disease interactions.

Predicting where these local-scale effects might be most intense would allow societies to take measures to address issues such as health and food security.

"Involving local communities in disease surveillance," said Altizer, "could become essential."

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
Beth Gavrilles, University of Georgia (706) 542-7247 bethgav@uga.edu
Lori Quillen, Cary Institute of Ecosystem Studies (845) 677-7600 quillenl@caryinstitute.org
Jim Scott, University of Colorado Boulder (303) 492-7531 jim.scott@colorado.edu
John Carberry, Cornell University (607) 255-5353 johncarberry@cornell.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2012, its budget was $7.0 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>