Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infants Can’t Distinguish Between Large and Small Groups, MU Researcher Finds

20.06.2012
Research could lead to improvements in childhood education

Human brains process large and small numbers of objects using two different mechanisms, but infants have not yet developed the ability to make those two processes work together, according to new research from the University of Missouri.

“This research was the first to show the inability of infants in a single age group to discriminate large and small sets in a single task,” said Kristy vanMarle, assistant professor of psychological sciences in the College of Arts and Science. “Understanding how infants develop the ability to represent and compare numbers could be used to improve early education programs.”

The MU study found that infants consistently chose the larger of two groups of food items when both sets were larger or smaller than four, just as an adult would. Unlike adults, the infants showed no preference for the larger group when choosing between one large and one small set. The results suggest that at age one infants have not yet integrated the two mental functions: one being the ability to estimate numbers of items at a glance and the other being the ability to visually track small sets of objects.

In vanMarle’s study, 10- to 12-month-old infants were presented with two opaque cups. Different numbers of pieces of breakfast cereal were hidden in each cup, while the infants observed, and then the infants were allowed to choose a cup. Four comparisons were tested between different combinations of large and small sets. Infants consistently chose two food items over one and eight items over four, but chose randomly when asked to compare two versus four and two versus eight.

“Being unable to determine that eight is larger than two would put an organism at a serious disadvantage,” vanMarle said. “However, ongoing studies in my lab suggest that the capacity to compare small and large sets seems to develop before age two.”

The ability to make judgments about the relative number of objects in a group has old evolutionary roots. Dozens of species, including some fish, monkeys and birds have shown the ability to recognize numerical differences in laboratory studies. VanMarle speculated that being unable to compare large and small sets early in infancy may not have been problematic during human evolution because young children probably received most of their food and protection from caregivers. Infants’ survival didn’t depend on determining which bush had the most berries or how many predators they just saw, she said.

“In the modern world there are educational programs that claim to give children an advantage by teaching them arithmetic at an early age,” said vanMarle. “This research suggests that such programs may be ineffective simply because infants are unable to compare some numbers with others.”

VanMarle’s research was published in the Journal of Experimental Child Psychology.

Timothy Wall | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>