Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infants Can’t Distinguish Between Large and Small Groups, MU Researcher Finds

20.06.2012
Research could lead to improvements in childhood education

Human brains process large and small numbers of objects using two different mechanisms, but infants have not yet developed the ability to make those two processes work together, according to new research from the University of Missouri.

“This research was the first to show the inability of infants in a single age group to discriminate large and small sets in a single task,” said Kristy vanMarle, assistant professor of psychological sciences in the College of Arts and Science. “Understanding how infants develop the ability to represent and compare numbers could be used to improve early education programs.”

The MU study found that infants consistently chose the larger of two groups of food items when both sets were larger or smaller than four, just as an adult would. Unlike adults, the infants showed no preference for the larger group when choosing between one large and one small set. The results suggest that at age one infants have not yet integrated the two mental functions: one being the ability to estimate numbers of items at a glance and the other being the ability to visually track small sets of objects.

In vanMarle’s study, 10- to 12-month-old infants were presented with two opaque cups. Different numbers of pieces of breakfast cereal were hidden in each cup, while the infants observed, and then the infants were allowed to choose a cup. Four comparisons were tested between different combinations of large and small sets. Infants consistently chose two food items over one and eight items over four, but chose randomly when asked to compare two versus four and two versus eight.

“Being unable to determine that eight is larger than two would put an organism at a serious disadvantage,” vanMarle said. “However, ongoing studies in my lab suggest that the capacity to compare small and large sets seems to develop before age two.”

The ability to make judgments about the relative number of objects in a group has old evolutionary roots. Dozens of species, including some fish, monkeys and birds have shown the ability to recognize numerical differences in laboratory studies. VanMarle speculated that being unable to compare large and small sets early in infancy may not have been problematic during human evolution because young children probably received most of their food and protection from caregivers. Infants’ survival didn’t depend on determining which bush had the most berries or how many predators they just saw, she said.

“In the modern world there are educational programs that claim to give children an advantage by teaching them arithmetic at an early age,” said vanMarle. “This research suggests that such programs may be ineffective simply because infants are unable to compare some numbers with others.”

VanMarle’s research was published in the Journal of Experimental Child Psychology.

Timothy Wall | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>