Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infants Can’t Distinguish Between Large and Small Groups, MU Researcher Finds

20.06.2012
Research could lead to improvements in childhood education

Human brains process large and small numbers of objects using two different mechanisms, but infants have not yet developed the ability to make those two processes work together, according to new research from the University of Missouri.

“This research was the first to show the inability of infants in a single age group to discriminate large and small sets in a single task,” said Kristy vanMarle, assistant professor of psychological sciences in the College of Arts and Science. “Understanding how infants develop the ability to represent and compare numbers could be used to improve early education programs.”

The MU study found that infants consistently chose the larger of two groups of food items when both sets were larger or smaller than four, just as an adult would. Unlike adults, the infants showed no preference for the larger group when choosing between one large and one small set. The results suggest that at age one infants have not yet integrated the two mental functions: one being the ability to estimate numbers of items at a glance and the other being the ability to visually track small sets of objects.

In vanMarle’s study, 10- to 12-month-old infants were presented with two opaque cups. Different numbers of pieces of breakfast cereal were hidden in each cup, while the infants observed, and then the infants were allowed to choose a cup. Four comparisons were tested between different combinations of large and small sets. Infants consistently chose two food items over one and eight items over four, but chose randomly when asked to compare two versus four and two versus eight.

“Being unable to determine that eight is larger than two would put an organism at a serious disadvantage,” vanMarle said. “However, ongoing studies in my lab suggest that the capacity to compare small and large sets seems to develop before age two.”

The ability to make judgments about the relative number of objects in a group has old evolutionary roots. Dozens of species, including some fish, monkeys and birds have shown the ability to recognize numerical differences in laboratory studies. VanMarle speculated that being unable to compare large and small sets early in infancy may not have been problematic during human evolution because young children probably received most of their food and protection from caregivers. Infants’ survival didn’t depend on determining which bush had the most berries or how many predators they just saw, she said.

“In the modern world there are educational programs that claim to give children an advantage by teaching them arithmetic at an early age,” said vanMarle. “This research suggests that such programs may be ineffective simply because infants are unable to compare some numbers with others.”

VanMarle’s research was published in the Journal of Experimental Child Psychology.

Timothy Wall | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>