Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infants Benefit from Implants with More Frequency Sounds

20.05.2014

Research Shows 6-Month-Olds' Ability to Understand Speech Improves When They Hear Less Distortion

A new study from a UT Dallas researcher demonstrates the importance of considering developmental differences when creating programs for cochlear implants in infants.


A UT Dallas researcher studied how 6-month-olds distinguished between speech sounds. Through cochlear implant simulations, she found that infants process speech differently than older children and adults.

Dr. Andrea Warner-Czyz, assistant professor in the School of Behavioral and Brain Sciences, recently published the research in the Journal of the Acoustical Society of America.

“This is the first study to show that infants process degraded speech that simulates a cochlear implant differently than older children and adults, which begs for new signal processing strategies to optimize the sound delivered to the cochlear implant for these young infants,” Warner-Czyz said.

Cochlear implants, which are surgically placed in the inner ear, provide the ability to hear for some people with severe to profound hearing loss. Because of technological and biological limitations, people with cochlear implants hear differently than those with normal hearing.

Think of a piano, which typically has 88 keys with each representing a note. The technology in a cochlear implant can’t play every key, but instead breaks them into groups, or channels. For example, a cochlear implant with 22 channels would put four notes into each group. If any keys within a group are played, all four notes are activated. Although the general frequency can be heard, the fine detail of the individual notes is lost.

Two of the major components necessary for understanding speech are the rhythm and the frequencies of the sound. Timing remains fairly accurate in cochlear implants, but some frequencies disappear as they are grouped.

More than eight or nine channels do not necessarily improve the hearing of speech in adults. This study is one of the first to examine how this signal degradation affects hearing speech in infants.

Infants pay greater attention to new sounds, so researchers compared how long a group of 6-month-olds focused on a speech sound they were familiarized with —“tea”’ — to a new speech sound, “ta.”

The infants spent more time paying attention to “ta,” demonstrating they could hear the difference between the two. Researchers repeated the experiment with speech sounds that were altered to sound as if they had been processed by a 16- or 32-channel cochlear implant.

The infants responded to the sounds that imitated a 32-channel implant the same as when they heard the normal sounds. But the infants did not show a difference with the sounds that imitated a 16-channel implant.

“These results suggest that 6-month-old infants need less distortion and more frequency information than older children and adults to discriminate speech,” Warner-Czyz said. “Infants are not just little versions of children or adults. They do not have the experience with listening or language to fill in the gaps, so they need more complete speech information to maximize their communication outcomes.”

Clinicians need to consider these developmental differences when working with very young cochlear implant recipients, Warner-Czyz said.

Other authors of the study include Dr. Derek Houston from Indiana University School of Medicine and Dr. Linda Hynan from UT Southwestern Medical Center.

This work was supported by a grant from the National Center for Advancing Translational Sciences.

Media Contact: Ben Porter, UT Dallas, (972) 883-2193, ben.porter@utdallas.edu
or the Office of Media Relations, UT Dallas, (972) 883-2155, newscenter@utdallas.edu

Ben Porter | Eurek Alert!
Further information:
http://www.utdallas.edu

Further reports about: Advancing Frequency Translational cochlear difference frequencies hearing implants sounds

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>