Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Individual primates display variation in general intelligence

18.06.2009
Researchers demonstrate differing cognitive abilities within a single primate species

Scientists at Harvard University have shown, for the first time, that intelligence varies among individual monkeys within a species – in this case, the cotton-top tamarin.

Testing for broad cognitive ability, the researchers identified high, middle, and low performing monkeys, determined by a general intelligence score. General intelligence, or "g," is a hallmark of human cognition, often described as similar to IQ. The effect of "g" in primates may offer insight into the evolution of human general intelligence.

The study, published this week in the journal PLoS One, is the first to examine differences of broad cognitive ability in primates within a single species. Previous studies of general intelligence in primates primarily concerned variation between species.

The research was led by Konika Banerjee, a research assistant in the Department of Psychology at Harvard University. Banerjee's co-authors are Marc Hauser, professor of psychology, and James J. Lee all of Harvard, along with Christopher Chabris of Union College, Fritz Tsao of Hillsdale College, and Valen Johnson of the University of Texas Medical School at Houston.

"We found that there was substantial individual variation in performance on these tasks," says Banerjee. "A significant proportion of that variation can actually be accounted for by something that looks very similar to the general intelligence, or 'g' factor, in humans. It appears to be the case that tamarins have something very similar to our general intelligence."

General intelligence, or "g," refers to the positive correlation of an individual's performance on various subtasks within an intelligence test. Banerjee and her colleagues found that "g" accounted for 20 percent of the monkeys' performance on the tasks in the study. The remaining 80 percent of the variation in performance was due to task-specific or environmental circumstances in testing the monkeys.

While not a direct comparison, human "g" accounts for 40 to 60 percent of the variation in an individual's performance on the various subtasks of an IQ test. It may be that an increase in the magnitude of "g" was integral to the evolution of the human brain.

"General intelligence is an important component of human intelligence, but it is also possible that it relies upon ancient neural substrates," says Banerjee. "If different primate taxa differ in the magnitude of 'g,' with humans standing out from the rest of the pack, this might help explain how we, uniquely, can combine thoughts from different domains of knowledge to create new representations of the world. This cognitive domain general ability, captured by 'g,' is something that you might see to varying degrees in other primate taxa."

This study was conducted among 22 cotton-top tamarins, who were administered 11 unique tasks designed to assess different cognitive functions including working memory, executive control, information processing speed, and inhibitory control. For some tasks, the monkeys' goal was to obtain a piece of food, but this was not the case for all of the tasks. Monkeys with higher "g" scores tended to outperform monkeys with lower scores across the various subtasks in the cognitive task battery.

This particular set of tasks was developed for this study, but Banerjee hopes that it or other similar task batteries might be applied to future studies of primate general intelligence, to develop a standardized test for cognitive ability that could be administered to many species.

"We called our cognitive task battery the 'monkey IQ test' very crudely," says Banerjee. "It's a fun way to think about it, but to be more accurate, I would say that we are looking at global cognitive ability across an array of tasks that span multiple cognitive domains."

The research was funded by the Harvard College Research Program and the Goelet Fund to Banerjee, and from grants to Hauser from the McDonnell Foundation and NSF.

Amy Lavoie | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

Scientists on the road to discovering impact of urban road dust

18.01.2018 | Ecology, The Environment and Conservation

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>