Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing neurogenesis might prevent drug addiction and relapse

01.03.2010
Researchers at UT Southwestern Medical Center hope they have begun paving a new pathway in the fight against drug dependence.

Their hypothesis – that increasing the normally occurring process of making nerve cells might prevent addiction – is based on a rodent study demonstrating that blocking new growth of specific brain nerve cells increases vulnerability for cocaine addiction and relapse.

The study's findings, available in the Journal of Neuroscience, are the first to directly link addiction with the process, called neurogenesis, in the region of the brain called the hippocampus.

While the research specifically focused on what happens when neurogenesis is blocked, the scientists said the results suggest that increasing adult neurogenesis might be a potential way to combat drug addiction and relapse.

"More research will be needed to test this hypothesis, but treatments that increase adult neurogenesis may prevent addiction before it starts, which would be especially important for patients treated with potentially addictive medications," said Dr. Amelia Eisch, associate professor of psychiatry at UT Southwestern and senior author of the study. "Additionally, treatments that increase adult neurogenesis during abstinence might prevent relapse."

Increasingly, addiction researchers have recognized that some aspects of the condition – such as forming drug-context associations – might involve the hippocampus, which is a region of the brain associated with learning and memory. Only with recent technological advances have scientists been able to test their theories in animals by manipulating the birth of new nerve cells in the hippocampus of the adult brain.

Physical activity and novel and enriched environments have been shown in animal studies to be good for the brain in general, but more research is needed to see if they can increase human adult neurogenesis.

Dr. Eisch and her colleagues used advanced radiation delivery techniques to prevent hippocampal neurogenesis. In one experiment, rats were allowed to self-administer cocaine by pressing a lever. Rats with radiated brains took more cocaine and seemed to find it more rewarding than rats that did not receive radiation.

In a second experiment, rats first self-administered cocaine and then received radiation to decrease neurogenesis during a period of time that they were without drugs. Rats with reduced neurogenesis took more time to realize that a drug lever was no longer connected to the drug dispenser.

"The nonirradiated rats didn't like the cocaine as much and learned faster to not press the formerly drug-associated lever," Dr. Eisch said. "In the context of this experiment, decreased neurogenesis fueled the process of addiction, instead of the cocaine changing the brain."

Dr. Eisch said she plans to do similar studies with other drugs of abuse, using imaging technology to study addiction and hippocampal neurogenesis in humans.

"If we can create and implement therapies that prevent addiction from happening in the first place, we can improve the length and quality of life for millions of drug abusers, and all those affected by an abuser's behavior," she said.

Another study author from UT Southwestern was Sarah Bulin, a graduate student research assistant. Other researchers involved in the work include Dr. Michele Noonan, former graduate research assistant in psychiatry, and Dwain Fuller from the VA North Texas Health Care System.

The study was funded by the National Institute on Drug Abuse.

Visit http://www.utsouthwestern.org/neurosciences to learn more about UT Southwestern's clinical services in the neurosciences, including psychiatry.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via e-mail, subscribe at www.utsouthwestern.edu/receivenews

LaKisha Ladson | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Inactivate vaccines faster and more effectively using electron beams

23.03.2017 | Life Sciences

New study maps space dust in 3-D

23.03.2017 | Physics and Astronomy

Tracing aromatic molecules in the early universe

23.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>