Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increasing dopamine in brain's frontal cortex decreases impulsive tendency, UCSF-Gallo study finds

26.07.2012
Raising levels of the neurotransmitter dopamine in the frontal cortex of the brain significantly decreased impulsivity in healthy adults, in a study conducted by researchers at the Ernest Gallo Clinic and Research Center at the University of California, San Francisco.

"Impulsivity is a risk factor for addiction to many substances, and it has been suggested that people with lower dopamine levels in the frontal cortex tend to be more impulsive," said lead author Andrew Kayser, PhD, an investigator at Gallo and an assistant professor of neurology at UCSF. "We wanted to see if we could decrease impulsivity by raising dopamine, and it seems as if we can."

The study was published on July 4 in the Journal of Neuroscience.

In a double-blinded, placebo-controlled study, 23 adult research participants were given either tolcapone, a medication approved by the Food and Drug Administration (FDA) that inhibits a dopamine-degrading enzyme, or a placebo. The researchers then gave the participants a task that measured impulsivity, asking them to make a hypothetical choice between receiving a smaller amount of money immediately ("smaller sooner") or a larger amount at a later time ("larger later"). Each participant was tested twice, once with tolcapone and once with placebo.

Participants – especially those who were more impulsive at baseline – were more likely to choose the less impulsive "larger later" option after taking tolcapone than they were after taking the placebo.

Magnetic resonance imaging conducted while the participants were taking the test confirmed that regions of the frontal cortex associated with decision-making were more active in the presence of tolcapone than in the presence of placebo.

"To our knowledge, this is the first study to use tolcapone to look for an effect on impulsivity," said Kayser.

The study was not designed to investigate the reasons that reduced dopamine is linked with impulsivity. However, explained Kayser, scientists believe that impulsivity is associated with an imbalance in dopamine between the frontal cortex, which governs executive functions such as cognitive control and self-regulation, and the striatum, which is thought to be involved in the planning and modification of more habitual behaviors.

"Most, if not all, drugs of abuse, such as cocaine and amphetamine, directly or indirectly involve the dopamine system," said Kayser. "They tend to increase dopamine in the striatum, which in turn may reward impulsive behavior. In a very simplistic fashion, the striatum is saying 'go,' and the frontal cortex is saying 'stop.' If you take cocaine, you're increasing the 'go' signal, and the 'stop' signal is not adequate to counteract it."

Kayser and his research team plan a follow-up study of the effects of tolcapone on drinking behavior. "Once we determine whether drinkers can safely tolerate this medication, we will see if it has any effect on how much they drink while they're taking it," said Kayser.

Tolcapone is approved as a medication for Parkinson's disease, in which a chronic deficit of dopamine inhibits movement.

Co-authors of the paper are Daicia C. Allen, BS, Ana Navarro-Cebrian, PhD, Jennifer M. Mitchell, PhD and senior author Howard L. Fields, MD, PhD, of the Gallo Center and UCSF.

The study was supported by funds from the Wheeler Center for the Neurobiology of Addiction, the U.S. Army Telemedicine and Advanced Technology Research Center, the Alcoholic Beverage Medical Research Foundation/The Foundation for Alcohol Research and the State of California.

The UCSF-affiliated Ernest Gallo Clinic and Research Center is one of the world's preeminent academic centers for the study of the biological basis of alcohol and substance use disorders. Gallo Center discoveries of potential molecular targets for the development of therapeutic medications are extended through preclinical and proof-of-concept clinical studies.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jennifer O’Brien | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>