Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Incorrect estimate is half-way to winning - Model describes how experiences influence our perception

25.11.2011
During estimation processes we unconsciously make use of recent experiences.

Scientists from the Ludwig-Maximilians-Universität (LMU) Munich and the Bernstein Center Munich asked test subjects to estimate distances in a virtual reality environment. The results revealed that estimates tended to approach the mean of all previously experienced distances. For the first time, scientists were able to accurately predict the experimental findings using a mathematical model. The model combines two well-known laws of psychophysics with a theorem from probability theory. The study could be of fundamental relevance to research on perception. (Journal of Neuroscience, November 23, 2011)

Why do we perceive identical distances as long in one situation and short in another? It all depends on the distances that we have covered in the immediate past. This might seem a trivial conclusion, but it gives an important insight into how the brain processes signals of different intensities or even abstract elements such as numbers. Dr. Stefan Glasauer (LMU), project leader at the Bernstein Center Munich, and PhD student Frederike Petzschner have investigated this effect both experimentally and theoretically. Test subjects were first asked to perform certain displacements in virtual reality and then to reproduce these displacements as accurately as possible. As in previous studies, the results showed a bias towards the mean of all previously experienced displacements.

The scientists can now provide a general explanation for this phenomenon. With the help of a mathematical model, they can calculate how previous stimuli affect the current estimate. “The influence of prior experience most probably follows a general principle, and is likely to hold true for the estimation of quantities or sound levels also,” says Glasauer. Test subjects whose distance estimates were strongly influenced by prior experience also placed greater weight on prior experience when asked to assess angular displacements. In both cases, they were learning without having received any information about the success or failure of their previous performance. Conventional learning methods, however, presuppose such feedback mechanisms.

Whether or not a fundamental principle determines the perception of stimulus strengths, such as sound levels, brightness, or even distances, has been a controversial issue. Two important laws of psychophysics, the so-called Weber-Fechner law, published 150 years ago, and the 50-year-old Stevens' power law, seemed to contradict each other. The Munich scientists have now shown that the two laws are in fact compatible, at least for certain cases. By combining the Weber-Fechner law with Bayes' Theorem (1763), a procedure from probability theory that allows evidence to be weighted, they were able to transform it into Stevens' power law. Glasauer is therefore confident that “we have helped to solving a problem that perception researchers have been studying for more than 50 years now.” Next, the researchers want to analyze historical data and determine whether the model also applies to different stimulus modalities, such as sound levels and brightness.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Original publication:
Petzschner F, Glasauer S (2011): Iterative Bayesian estimation as an explanation for range and regression effects - A study on human path integration. J Neurosci 2011, 31(47): 17220-17229
For further information please contact:
Dr. Stefan Glasauer
sglasauer@nefo.med.uni-muenchen.de
Bernstein Center Munich and
Ludwig-Maximilians-Universität München
Institute of Clinical Neurosciences
Marchioninistr. 23
81377 Munich, Germany
Phone: +49-89-7095-4839

Johannes Faber | idw
Further information:
http://www.bccn-muenchen.de/
http://www.nncn.de/
http://www.lmu.de/

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>