Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Incorrect estimate is half-way to winning - Model describes how experiences influence our perception

25.11.2011
During estimation processes we unconsciously make use of recent experiences.

Scientists from the Ludwig-Maximilians-Universität (LMU) Munich and the Bernstein Center Munich asked test subjects to estimate distances in a virtual reality environment. The results revealed that estimates tended to approach the mean of all previously experienced distances. For the first time, scientists were able to accurately predict the experimental findings using a mathematical model. The model combines two well-known laws of psychophysics with a theorem from probability theory. The study could be of fundamental relevance to research on perception. (Journal of Neuroscience, November 23, 2011)

Why do we perceive identical distances as long in one situation and short in another? It all depends on the distances that we have covered in the immediate past. This might seem a trivial conclusion, but it gives an important insight into how the brain processes signals of different intensities or even abstract elements such as numbers. Dr. Stefan Glasauer (LMU), project leader at the Bernstein Center Munich, and PhD student Frederike Petzschner have investigated this effect both experimentally and theoretically. Test subjects were first asked to perform certain displacements in virtual reality and then to reproduce these displacements as accurately as possible. As in previous studies, the results showed a bias towards the mean of all previously experienced displacements.

The scientists can now provide a general explanation for this phenomenon. With the help of a mathematical model, they can calculate how previous stimuli affect the current estimate. “The influence of prior experience most probably follows a general principle, and is likely to hold true for the estimation of quantities or sound levels also,” says Glasauer. Test subjects whose distance estimates were strongly influenced by prior experience also placed greater weight on prior experience when asked to assess angular displacements. In both cases, they were learning without having received any information about the success or failure of their previous performance. Conventional learning methods, however, presuppose such feedback mechanisms.

Whether or not a fundamental principle determines the perception of stimulus strengths, such as sound levels, brightness, or even distances, has been a controversial issue. Two important laws of psychophysics, the so-called Weber-Fechner law, published 150 years ago, and the 50-year-old Stevens' power law, seemed to contradict each other. The Munich scientists have now shown that the two laws are in fact compatible, at least for certain cases. By combining the Weber-Fechner law with Bayes' Theorem (1763), a procedure from probability theory that allows evidence to be weighted, they were able to transform it into Stevens' power law. Glasauer is therefore confident that “we have helped to solving a problem that perception researchers have been studying for more than 50 years now.” Next, the researchers want to analyze historical data and determine whether the model also applies to different stimulus modalities, such as sound levels and brightness.

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Original publication:
Petzschner F, Glasauer S (2011): Iterative Bayesian estimation as an explanation for range and regression effects - A study on human path integration. J Neurosci 2011, 31(47): 17220-17229
For further information please contact:
Dr. Stefan Glasauer
sglasauer@nefo.med.uni-muenchen.de
Bernstein Center Munich and
Ludwig-Maximilians-Universität München
Institute of Clinical Neurosciences
Marchioninistr. 23
81377 Munich, Germany
Phone: +49-89-7095-4839

Johannes Faber | idw
Further information:
http://www.bccn-muenchen.de/
http://www.nncn.de/
http://www.lmu.de/

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>