Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving Crisis Prediction, Disaster Control and Damage Reduction

15.09.2010
Some disasters and crises are related to each other by more than just the common negative social value we assign to them. For example, earthquakes, homicide surges, magnetic storms, and the U.S. economic recession are all kindred of a sort, according to a theoretical framework presented in the journal CHAOS, which is published by the American Institute of Physics.

The researchers who developed this framework contend that these four types of events share a precursory development pattern -- a specific change of scale in indicators that can be tracked. They suggest that detecting this pattern could improve crisis prediction.

"Knowing the patterns of extreme events development is pivotal both for predictive understanding of these events and for enhancing disaster preparedness," says investigator Vladimir Keilis-Borok of the University of California, Los Angeles.

Adds his colleague Alexander Soloviev of the Russian Academy of Sciences: "A premonitory pattern common to four complex systems of different nature is probably a manifestation of a certain general feature of complex systems."

To mathematicians who probe complexity, extreme events grow out of the dynamic interplay of indicators representing a complex process. A system may give off signals that deep shift is afoot. A change of scaling is a "premonitory pattern" indicating a coming extreme event. This manifests as a shift in pattern -- large events that were once infrequent begin to occur closer and closer together (similar to the way that the tempo of "Jaws" soundtrack increases in anticipation of a shark attack).

That systems as diverse as an earthquake, surge in homicides, economic recession and magnetic storm can share a developmental pattern is not as surprising as it may at first seem. Systems are deep as well as dynamic: shift happens -- and can, to a large extent, be predicted to save and improve lives.

The article, "Variations of trends of indicators describing complex systems: Change of scaling precursory to extreme events" by Vladimir Keilis-Borok (University of California, Los Angeles) and Alexandre Soloviev (International Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences) appears in the journal CHAOS. http://link.aip.org/link/chaoeh/v20/i3/p033104/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

ABOUT CHAOS
Chaos is an interdisciplinary journal of non-linear science. The journal is published quarterly by the American Institute of Physics and is devoted to increasing the understanding of nonlinear phenomena and describing the manifestations in a manner comprehensible to researchers from a broad spectrum of disciplines. Special focus issues are published periodically each year and cover topics as diverse as the complex behavior of the human heart to chaotic fluid flow problems. See: http://chaos.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine

23.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>