Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved pavement markings can save lives

20.03.2014

New Concordia study shows road safety could be enhanced by better roadway markings

As spring finally emerges after a ferocious winter, our battered roads will soon be re-exposed. While potholes and cracks might make news, a larger concern should be the deterioration to pavement markings, from yellow to white lines, which are a major factor in preventing traffic accidents.

A study from Concordia University, funded by Infrastructure Canada and published in Structure and Infrastructure Engineering, found that snowplows are the biggest culprit in erasing roadway markings.

The research team also examined the impact of salt and sand on the visibility of pavement markings. The conclusion: a simple switch in paint can save cars — and lives.

Using data from the Ontario and Quebec ministries of transportation and the municipalities of Montreal and Ottawa, Professor Tarek Zayed of Concordia’s Department of Building, Civil and Environmental Engineering measured the relationship between materials used in pavement markings, and their age and durability.

He also compared highways with city roads, examined traffic levels and took note of the types of vehicles involved. Finally, Zayed and his research team examined marking types such as highway centre lines, pedestrian crosswalks and traffic intersections.

They found snowploughs to be the worst on roads because they literally scrape paint off the streets. “Snow removal is the major contributing factor to wear and tear on pavement markings, because when snow is pushed off the road, part of the markings is taken off too,” says Zayed.

What can improve the chances of pavement markings surviving the winter? Zayed suggests that an upgrade to more expensive and durable epoxy paint might be more cost effective in the long run. Other options include paint tape and thermoplastic, although these are quite expensive.

He also suggests wider use of a technical device called a retroreflectometer to help assess the paint’s reflectivity and resulting effectiveness. “In the U.S., this standard has been in place for almost a decade,” he says, adding that minimum standards for reflectivity are used to signal when a road must be repainted.

Zayed also says Canadian roads are in desperate need of more studies. For example, while epoxy is known to be a more durable paint, since it is not yet widely used in Ontario and Quebec, more research is needed to show exactly how it holds up to stressors like salt and snow removal.

While several studies have been conducted in the central and southern United States to compare and evaluate the durability of pavement markings, Zayed points out that the findings don’t translate very well given the strikingly different weather conditions between warm versus seasonal climates.

Partners in research: This study, funded by Infrastructure Canada, was co-authored by Emad Elwakil, Ahmed Eweda and Tarek Zayed, members of the Department of Building, Civil and Environmental Engineering at Concordia University.

Learn more about Concordia’s Faculty of Engineering and Computer Science by checking out the latest edition of the faculty magazine.

Clea Desjardins | EurekAlert!
Further information:
http://www.concordia.ca/news/stories/cunews/main/stories/2014/03/19/improved-pavementmarkingscansavelives.html

Further reports about: Building Computer Engineering Environmental Infrastructure highways roads types

More articles from Studies and Analyses:

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

nachricht Brain connectivity reveals hidden motives
04.03.2016 | Universität Zürich

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>