Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved pavement markings can save lives

20.03.2014

New Concordia study shows road safety could be enhanced by better roadway markings

As spring finally emerges after a ferocious winter, our battered roads will soon be re-exposed. While potholes and cracks might make news, a larger concern should be the deterioration to pavement markings, from yellow to white lines, which are a major factor in preventing traffic accidents.

A study from Concordia University, funded by Infrastructure Canada and published in Structure and Infrastructure Engineering, found that snowplows are the biggest culprit in erasing roadway markings.

The research team also examined the impact of salt and sand on the visibility of pavement markings. The conclusion: a simple switch in paint can save cars — and lives.

Using data from the Ontario and Quebec ministries of transportation and the municipalities of Montreal and Ottawa, Professor Tarek Zayed of Concordia’s Department of Building, Civil and Environmental Engineering measured the relationship between materials used in pavement markings, and their age and durability.

He also compared highways with city roads, examined traffic levels and took note of the types of vehicles involved. Finally, Zayed and his research team examined marking types such as highway centre lines, pedestrian crosswalks and traffic intersections.

They found snowploughs to be the worst on roads because they literally scrape paint off the streets. “Snow removal is the major contributing factor to wear and tear on pavement markings, because when snow is pushed off the road, part of the markings is taken off too,” says Zayed.

What can improve the chances of pavement markings surviving the winter? Zayed suggests that an upgrade to more expensive and durable epoxy paint might be more cost effective in the long run. Other options include paint tape and thermoplastic, although these are quite expensive.

He also suggests wider use of a technical device called a retroreflectometer to help assess the paint’s reflectivity and resulting effectiveness. “In the U.S., this standard has been in place for almost a decade,” he says, adding that minimum standards for reflectivity are used to signal when a road must be repainted.

Zayed also says Canadian roads are in desperate need of more studies. For example, while epoxy is known to be a more durable paint, since it is not yet widely used in Ontario and Quebec, more research is needed to show exactly how it holds up to stressors like salt and snow removal.

While several studies have been conducted in the central and southern United States to compare and evaluate the durability of pavement markings, Zayed points out that the findings don’t translate very well given the strikingly different weather conditions between warm versus seasonal climates.

Partners in research: This study, funded by Infrastructure Canada, was co-authored by Emad Elwakil, Ahmed Eweda and Tarek Zayed, members of the Department of Building, Civil and Environmental Engineering at Concordia University.

Learn more about Concordia’s Faculty of Engineering and Computer Science by checking out the latest edition of the faculty magazine.

Clea Desjardins | EurekAlert!
Further information:
http://www.concordia.ca/news/stories/cunews/main/stories/2014/03/19/improved-pavementmarkingscansavelives.html

Further reports about: Building Computer Engineering Environmental Infrastructure highways roads types

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

Im Focus: A Peek into the “Birthing Room” of Ribosomes

Scaffolding and specialised workers help with the delivery – Heidelberg biochemists gain new insights into biogenesis

A type of scaffolding on which specialised workers ply their trade helps in the manufacturing process of the two subunits from which the ribosome – the protein...

Im Focus: New protocol enables analysis of metabolic products from fixed tissues

Scientists at the Helmholtz Zentrum München have developed a new mass spectrometry imaging method which, for the first time, makes it possible to analyze hundreds of metabolites in fixed tissue samples. Their findings, published in the journal Nature Protocols, explain the new access to metabolic information, which will offer previously unexploited potential for tissue-based research and molecular diagnostics.

In biomedical research, working with tissue samples is indispensable because it permits insights into the biological reality of patients, for example, in...

Im Focus: Computer Simulation Renders Transient Chemical Structures Visible

Chemists at the University of Basel have succeeded in using computer simulations to elucidate transient structures in proteins. In the journal Angewandte Chemie, the researchers set out how computer simulations of details at the atomic level can be used to understand proteins’ modes of action.

Using computational chemistry, it is possible to characterize the motion of individual atoms of a molecule. Today, the latest simulation techniques allow...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

Hey robot, shimmy like a centipede

22.07.2016 | Information Technology

New record in materials research: 1 terapascals in a laboratory

22.07.2016 | Physics and Astronomy

University of Graz researchers challenge 140-year-old paradigm of lichen symbiosis

22.07.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>