Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improved pavement markings can save lives

20.03.2014

New Concordia study shows road safety could be enhanced by better roadway markings

As spring finally emerges after a ferocious winter, our battered roads will soon be re-exposed. While potholes and cracks might make news, a larger concern should be the deterioration to pavement markings, from yellow to white lines, which are a major factor in preventing traffic accidents.

A study from Concordia University, funded by Infrastructure Canada and published in Structure and Infrastructure Engineering, found that snowplows are the biggest culprit in erasing roadway markings.

The research team also examined the impact of salt and sand on the visibility of pavement markings. The conclusion: a simple switch in paint can save cars — and lives.

Using data from the Ontario and Quebec ministries of transportation and the municipalities of Montreal and Ottawa, Professor Tarek Zayed of Concordia’s Department of Building, Civil and Environmental Engineering measured the relationship between materials used in pavement markings, and their age and durability.

He also compared highways with city roads, examined traffic levels and took note of the types of vehicles involved. Finally, Zayed and his research team examined marking types such as highway centre lines, pedestrian crosswalks and traffic intersections.

They found snowploughs to be the worst on roads because they literally scrape paint off the streets. “Snow removal is the major contributing factor to wear and tear on pavement markings, because when snow is pushed off the road, part of the markings is taken off too,” says Zayed.

What can improve the chances of pavement markings surviving the winter? Zayed suggests that an upgrade to more expensive and durable epoxy paint might be more cost effective in the long run. Other options include paint tape and thermoplastic, although these are quite expensive.

He also suggests wider use of a technical device called a retroreflectometer to help assess the paint’s reflectivity and resulting effectiveness. “In the U.S., this standard has been in place for almost a decade,” he says, adding that minimum standards for reflectivity are used to signal when a road must be repainted.

Zayed also says Canadian roads are in desperate need of more studies. For example, while epoxy is known to be a more durable paint, since it is not yet widely used in Ontario and Quebec, more research is needed to show exactly how it holds up to stressors like salt and snow removal.

While several studies have been conducted in the central and southern United States to compare and evaluate the durability of pavement markings, Zayed points out that the findings don’t translate very well given the strikingly different weather conditions between warm versus seasonal climates.

Partners in research: This study, funded by Infrastructure Canada, was co-authored by Emad Elwakil, Ahmed Eweda and Tarek Zayed, members of the Department of Building, Civil and Environmental Engineering at Concordia University.

Learn more about Concordia’s Faculty of Engineering and Computer Science by checking out the latest edition of the faculty magazine.

Clea Desjardins | EurekAlert!
Further information:
http://www.concordia.ca/news/stories/cunews/main/stories/2014/03/19/improved-pavementmarkingscansavelives.html

Further reports about: Building Computer Engineering Environmental Infrastructure highways roads types

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>