Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important defence against stomach ulcer bacterium identified

12.10.2009
A special protein in the lining of the stomach has been shown to be an important part of the body's defence against the stomach ulcer bacterium Helicobacter pylori in a new study from the Sahlgrenska Academy at the University of Gothenburg. The discovery may explain why the bacterium makes some people more ill than others.

The study was conducted in collaboration with researchers at universities in Brisbane and Melbourne and has been published in the scientific journal Public Library of Science Pathogens.

"Half of all people carry Helicobacter pylori in their bodies," says Sara Lindén from the Sahlgrenska Academy, one of the researchers behind the study. "Many don't even notice that they have the bacterium, but some develop stomach ulcers, and in some cases the inflammation leads to stomach cancer. Our discovery may partially explain why the bacterium affects people so differently."

The research team has shown that a protein called MUC1 found in the lining of the stomach is important for the body's defence against the bacterium. Greatly magnified, MUC1 looks like a tree growing out of low bushes on the surface of the stomach. As MUC1 is taller than the other structures on the cell surface, Helicobacter pylori readily becomes attached to the protein and then rarely gets to infect the cell.

"You could say that MUC1 acts as a decoy which prevents the bacterium from coming into close contact with the cell surface," says Lindén. "Genetic variations between people mean that our MUC1 molecules vary in length, and this may be part of the reason why Helicobacter pylori makes some people more ill than others."

The Research team of Sara Lindén is located at the Sahlgrenska Academy's strategic research centre MIVAC (Mucosal Immunobiology and Vaccine Center). Researchers at the centre are developing new ways of treating diseases that affect the mucus membranes.

ABOUT HELICOBACTER PYLORI
There are many different strains of the helical rod bacterium Helicobacter pylori. The bacterium has several different structures on its surface that it uses to attach to other structures rather like a space shuttle docks onto a space station. These structures look different on different strains of the bacterium.
For more information, please contact:
Sara Lindén, assistant professor, tel +46 70 981 79 79, +46 584 47 20 27, e-mail sara.linden@gu.se
Journal: Public Library of Science Pathogens
Title of article: MUC1 Limits Helicobacter pylori Infection Both by Steric Hindrance and by Acting as a Releasable Decoy

Authors: Sara K Lindén, Yong H Sheng, Alison L Every, Kim M Miles, Emma C Skoog, Timothy HJ Florin, Philip Sutton and Michael A McGuckin

Elin Lindström Claessen
Public Relations Officer at the Sahlgrenska Academy at the University of Gothenburg
Tel: +46 31 786 3869, +46 70 829 43 03
E-mail: elin.lindstrom@sahlgrenska.gu.se
The Sahlgrenska Academy is the health sciences faculty at the University of Gothenburg and conducts education and research in the fields of medicine, dentistry and care sciences. About 4,000 undergraduate and 1,000 doctoral students are enrolled at the academy, which has 1,500 employees, including 850 research and/or teaching staff.

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.sahlgrenska.gu.se

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>