Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Important defence against stomach ulcer bacterium identified

12.10.2009
A special protein in the lining of the stomach has been shown to be an important part of the body's defence against the stomach ulcer bacterium Helicobacter pylori in a new study from the Sahlgrenska Academy at the University of Gothenburg. The discovery may explain why the bacterium makes some people more ill than others.

The study was conducted in collaboration with researchers at universities in Brisbane and Melbourne and has been published in the scientific journal Public Library of Science Pathogens.

"Half of all people carry Helicobacter pylori in their bodies," says Sara Lindén from the Sahlgrenska Academy, one of the researchers behind the study. "Many don't even notice that they have the bacterium, but some develop stomach ulcers, and in some cases the inflammation leads to stomach cancer. Our discovery may partially explain why the bacterium affects people so differently."

The research team has shown that a protein called MUC1 found in the lining of the stomach is important for the body's defence against the bacterium. Greatly magnified, MUC1 looks like a tree growing out of low bushes on the surface of the stomach. As MUC1 is taller than the other structures on the cell surface, Helicobacter pylori readily becomes attached to the protein and then rarely gets to infect the cell.

"You could say that MUC1 acts as a decoy which prevents the bacterium from coming into close contact with the cell surface," says Lindén. "Genetic variations between people mean that our MUC1 molecules vary in length, and this may be part of the reason why Helicobacter pylori makes some people more ill than others."

The Research team of Sara Lindén is located at the Sahlgrenska Academy's strategic research centre MIVAC (Mucosal Immunobiology and Vaccine Center). Researchers at the centre are developing new ways of treating diseases that affect the mucus membranes.

ABOUT HELICOBACTER PYLORI
There are many different strains of the helical rod bacterium Helicobacter pylori. The bacterium has several different structures on its surface that it uses to attach to other structures rather like a space shuttle docks onto a space station. These structures look different on different strains of the bacterium.
For more information, please contact:
Sara Lindén, assistant professor, tel +46 70 981 79 79, +46 584 47 20 27, e-mail sara.linden@gu.se
Journal: Public Library of Science Pathogens
Title of article: MUC1 Limits Helicobacter pylori Infection Both by Steric Hindrance and by Acting as a Releasable Decoy

Authors: Sara K Lindén, Yong H Sheng, Alison L Every, Kim M Miles, Emma C Skoog, Timothy HJ Florin, Philip Sutton and Michael A McGuckin

Elin Lindström Claessen
Public Relations Officer at the Sahlgrenska Academy at the University of Gothenburg
Tel: +46 31 786 3869, +46 70 829 43 03
E-mail: elin.lindstrom@sahlgrenska.gu.se
The Sahlgrenska Academy is the health sciences faculty at the University of Gothenburg and conducts education and research in the fields of medicine, dentistry and care sciences. About 4,000 undergraduate and 1,000 doctoral students are enrolled at the academy, which has 1,500 employees, including 850 research and/or teaching staff.

Helena Aaberg | idw
Further information:
http://www.gu.se/
http://www.sahlgrenska.gu.se

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>