Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Importance of short-wavelength excitation in environmental vibrations due to urban rail traffic

27.04.2012
Environmental vibrations induced by urban railway traffic are mainly generated from uneven wheel–rail contact in the short wavelength range, according to a study in the 4th issue of SCIENCE CHINA Technological Sciences, 2012.

The introduction of urban railways is one of the most effective ways to deal with traffic problems in large cities. However, in the vicinity of railways, day-by-day vibrations from trains may cause discomfort to people, the malfunctioning of sensitive equipment, and even damage to old buildings, and railways therefore have serious environmental problems. The development of urban railways is now limited by such environmental vibrations.

Effective vibration-reduction technologies rely on a good understanding of the excitation source that generates the vibrations. "In recent years, substantial progress has been made in modeling the train–track–ground interaction, and consensus has been reached that the excitation source is the moving of constant loads and uneven contact between wheels and rails," according to background information in the article. "Nevertheless, the contact can hardly be measured directively, so its amplitude and frequency contents are not completely understood, and its quantitative expression remains a problem for further research to address.

Recently, a research group led by Prof. Tao Xiaxin at Harbin Institute of Technology, China, has made a breakthrough in revealing the excitation mechanism. Based on an inversion study in the frequency and wave-number domain, Dr. Wang Futong, a key research member in the group, has found that high-frequency contents are predominant in the excitation. A power spectral density function (PSD) of uneven wheel–rail contact, rather than the track PSD, was suggested to describe the random characteristics of the excitation source. An inversion strategy was then established to obtain the source function from vibration data recorded by an observation array at the ground surface. The wheel–rail unevenness PSD, being the source function for the No. 13 Beijing urban railway, was obtained by the inversion strategy. The result indicated that the source function properly described the track unevenness in the range of wavelengths over 1.2 m, and showed wheel irregularities in the range of wavelengths shorter than 1.2 m.

The researchers found that, in the range of short wavelengths under 1.2 m, the wheel–rail PSD maintained a value higher than the 6th class of the track PSD suggested by the Federal Railway Administration. As urban trains do not travel particularly quickly, this short wavelength range exactly corresponds to the main frequency band of environmental vibrations; i.e., the frequency components of the vibrations stem mainly from that range of uneven excitation. Taking account of only moving constant loads and track unevenness could result in a severe underestimation of the environmental vibrations.

"Whereas the track spectrum reflects only the evenness of the track, the wheel–rail spectrum expresses both the track unevenness and the irregularities of wheels, and it is therefore more suitable to be used as the source function of urban railway traffic," the researchers write. "It is also shown that inversion of the exciting source according to observed ground vibrations is an effective way to detect quantitatively the combined wheel–rail unevenness."

The research has been supported by the National Natural Scientific Foundation of China, under contract No. 50538030.

For more information, please see the original article.

Wang Futong, Tao Xiaxin, Zheng Xin. Inversion of Excitation Source in Ground Vibration from Urban Railway Traffic. Sci China Tech Sci, 55: 950-959, doi: 10.1007/s11431-011-4665-9

WANG Futong | EurekAlert!
Further information:
http://zh.scichina.com/english/

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

NASA'S OSIRIS-REx spacecraft slingshots past Earth

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>