Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impaired brain plasticity linked to Angelman syndrome learning deficits

12.05.2009
How might disruption of a single gene in the brain cause the severe cognitive deficits associated with Angelman syndrome, a neurogenetic disorder?

Researchers at the University of North Carolina at Chapel Hill School of Medicine and Duke University now believe they have the answer: impaired brain plasticity.

"When we have experiences, connections between brain cells are modified so that we can learn," said Benjamin Philpot, Ph.D., professor of cell and molecular physiology at UNC and senior author of the study published online May 10 in Nature Neuroscience. "By strengthening and weakening appropriate connections between brain cells, a process termed 'synaptic plasticity', we are able to constantly learn and adapt to an ever-changing environment."

Angelman syndrome occurs in one in 15,000 live births. The most common genetic defect of the syndrome is the lack of expression of the gene UBE3A on chromosome 15. The syndrome often is misdiagnosed as cerebral palsy or autism. Characteristics of the syndrome include intellectual and developmental delay, severe mental retardation lack of speech (minimal or no use of words), seizures, sleep disturbance, hand flapping and motor and balance disorders.

Philpot and his co-authors studied a mouse model of Angelman syndrome. In these mice, the gene UBE3A is functionally deficient. The study found that brain cells in the mice lacked the ability to appropriately strengthen or weaken their connections in the neocortex, a region of the brain that is important for cognitive abilities.

"If brain cells were unable to modify their connections with new experiences, then we would have difficulty learning," said Michael Ehlers, M.D., Ph.D., professor of neurobiology at Duke and co-senior author of the study. "We have found that a specific form of brain plasticity is severely impaired in a mouse model of Angelman syndrome and this prevents brain circuits from encoding information provided by sensory experiences. In addition, an exciting possibility is that the defect we have found may be a more general feature of other disorders of brain development including autism."

The inability of brain cells to encode information from experiences in the Angelman syndrome model suggests that this is the basis for the learning difficulties in these patients.

"It is difficult to study how experiences lead to changes in the brain in models of mental retardation," said Koji Yashiro, PhD, a former graduate student in Philpot's lab and lead author of the study, now a scientist with Urogenix, Inc. in Research Triangle Park, North Carolina. "Instead of studying a complex learning model, we studied how connections between brain cells change in visual areas of mice exposed to light or kept in darkness. This approach revealed that brain cells in normal mice can modify their connections in response to changes in visual experiences, while the brain cells in Angelman syndrome model mice could not."

An unexpected finding was that the plasticity of the cellular connections could be restored in visual areas of the brain after brief periods of visual deprivation. Philpot said the observation that the brain defect could be reversed "is very encouraging, as it suggests that viable behavioral or pharmacological therapies are likely to exist."

"By showing that brain plasticity can be restored in Angelman syndrome model mice, our findings suggest that brain cells in Angelman syndrome patients maintain a latent ability to express plasticity. We are now collaborating to find a way to tap into this latent plasticity, as this could offer a treatment, or even a cure, for Angelman syndrome," said Philpot.

Philpot added, "This same experimental approach could also reveal how brain cells encode information from experiences in other related disorders, such as autism, and may provide a model to find cures for a variety of neurodevelopmental disorders."

Other authors are, from Philpot's UNC lab: Thorfinn Riday, graduate student; Adam Roberts, Ph.D., postdoctoral fellow; Danilo Bernardo, medical student; and Rohit Prakash, former M.D./Ph.D. rotation student. Kathryn Condon, a graduate student in Ehler's lab and the department of neurobiology at Duke University; and Richard Weinberg, Ph.D., professor of cell and developmental biology at UNC, also participated in the research.

Support for the work came from grants from the National Institutes of Health, the Howard Hughes Medical Institute, the Angelman Syndrome Foundation and the Simons Foundation.

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>