Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of whooping cough vaccination revealed

23.04.2014

Comprehensive study shows effect of vaccination on spread and diversification of Bordetella pertussis

The most comprehensive study to date of the family of bacteria that causes whooping cough points to more effective vaccine strategies and reveals surprising findings about the bacteria's origin and evolution. The new results could alter public health strategies to control this respiratory disease, which kills 195,000 children worldwide each year.

Genomic analysis of 343 strains of the Bordetella pertussis bacteria from around the world collected over the last 100 years illustrates how vaccination has shaped its evolution. Since its introduction across the globe between 1940 and 1960, vaccination has dramatically reduced rates of infection and loss of life from whooping cough. However, strategies used to date have not completely eradicated strains of the bacteria, instead leading to an increase in diversity.

"The scale of this study and the detailed family history of B. pertussis we are able to draw from it illustrate the journey this bacterium has taken since its emergence," says Dr Simon Harris, a first author at the Wellcome Trust Sanger Institute. "By seeing how an organism escapes vaccination we can build better strategies to control and eradicate it."

While researchers suspect that the diversity may be the result of lineages of the bacteria persisting in unvaccinated populations, resurgence of B. pertussis has also been observed between 2010 and 2012 in highly vaccinated populations such as Australia, the Netherlands, the UK and the USA. One reason could be the widespread switch to the use of acellular vaccines, which, though better tolerated than the original whole-cell vaccines, tend to produce more rapidly-waning immunity.

"To stem the rise of whooping cough without returning to whole-cell vaccines, which can be reactogenic, we need to employ strategic vaccination," says Dr Marieke Bart, a first author from the National Institute of Public Health and the Environment, the Netherlands. "This could include vaccinating mothers in pregnancy so babies are born with some level of protection and cocooning a newborn by vaccinating adults around it. In the long run, however, we need better pertussis vaccines."

As well as suggesting strategies for control in the future, the study revealed new findings about B. pertussis' past. Genetic analysis of the strains shows that whooping cough emerged and spread rapidly in humans in the late Middle Ages, around 500 years ago, not in the Neolithic period more than 10,000 years ago, as previously thought.

This finding resolves a puzzle that had troubled scientists for some time: despite characteristic symptoms and a high rate of mortality in unvaccinated children, records of whooping cough are entirely absent from ancient European literature. This new analysis, which places the emergence and rapid global spread of the infection in the human population within the last 500 years, is consistent with historical records that first identify the disease in Paris in 1578. The only earlier reference to a disease with similar symptoms has been found in a Korean medical textbook from the 15th Century.

"Over the past five years or so it has become clear that we have got our dating in bacteriology wrong," says Professor Julian Parkhill, a senior group leader at the Sanger Institute and a senior author of the study. "The mutation rate we were working with is probably two orders of magnitude out, so we thought the last common ancestor of these modern B. pertussis strains was tens of thousands of years old when, in fact, it is much younger than that."

###

Notes to Editors

Publication Details

Marieke J Bart et al (2014) Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. mBio DOI:10.1128/mBio.01074-14

Funding

This work was supported by the Wellcome Trust (grant number 098051), the RIVM (SOR project S/230446/01/BV), and the National Health and Medical Research Council of Australia.

Participating Centres

A full list of participating centres can be found on the paper.

Selected Websites

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.
http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.
http://www.wellcome.ac.uk

Contact details

Don Powell Media Manager
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel +44 (0)1223 496 928
Mobile +44 (0)7753 7753 97
Email press.office@sanger.ac.uk

Mary Clarke | Eurek Alert!

Further reports about: Bordetella pertussis bacteria populations strains strategies symptoms vaccination vaccines

More articles from Studies and Analyses:

nachricht Memories Influence Choice of Food
22.05.2015 | Universität Basel

nachricht Memories Influence The Decision in Choosing Certain Foods
21.05.2015 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>