Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Impact of whooping cough vaccination revealed

23.04.2014

Comprehensive study shows effect of vaccination on spread and diversification of Bordetella pertussis

The most comprehensive study to date of the family of bacteria that causes whooping cough points to more effective vaccine strategies and reveals surprising findings about the bacteria's origin and evolution. The new results could alter public health strategies to control this respiratory disease, which kills 195,000 children worldwide each year.

Genomic analysis of 343 strains of the Bordetella pertussis bacteria from around the world collected over the last 100 years illustrates how vaccination has shaped its evolution. Since its introduction across the globe between 1940 and 1960, vaccination has dramatically reduced rates of infection and loss of life from whooping cough. However, strategies used to date have not completely eradicated strains of the bacteria, instead leading to an increase in diversity.

"The scale of this study and the detailed family history of B. pertussis we are able to draw from it illustrate the journey this bacterium has taken since its emergence," says Dr Simon Harris, a first author at the Wellcome Trust Sanger Institute. "By seeing how an organism escapes vaccination we can build better strategies to control and eradicate it."

While researchers suspect that the diversity may be the result of lineages of the bacteria persisting in unvaccinated populations, resurgence of B. pertussis has also been observed between 2010 and 2012 in highly vaccinated populations such as Australia, the Netherlands, the UK and the USA. One reason could be the widespread switch to the use of acellular vaccines, which, though better tolerated than the original whole-cell vaccines, tend to produce more rapidly-waning immunity.

"To stem the rise of whooping cough without returning to whole-cell vaccines, which can be reactogenic, we need to employ strategic vaccination," says Dr Marieke Bart, a first author from the National Institute of Public Health and the Environment, the Netherlands. "This could include vaccinating mothers in pregnancy so babies are born with some level of protection and cocooning a newborn by vaccinating adults around it. In the long run, however, we need better pertussis vaccines."

As well as suggesting strategies for control in the future, the study revealed new findings about B. pertussis' past. Genetic analysis of the strains shows that whooping cough emerged and spread rapidly in humans in the late Middle Ages, around 500 years ago, not in the Neolithic period more than 10,000 years ago, as previously thought.

This finding resolves a puzzle that had troubled scientists for some time: despite characteristic symptoms and a high rate of mortality in unvaccinated children, records of whooping cough are entirely absent from ancient European literature. This new analysis, which places the emergence and rapid global spread of the infection in the human population within the last 500 years, is consistent with historical records that first identify the disease in Paris in 1578. The only earlier reference to a disease with similar symptoms has been found in a Korean medical textbook from the 15th Century.

"Over the past five years or so it has become clear that we have got our dating in bacteriology wrong," says Professor Julian Parkhill, a senior group leader at the Sanger Institute and a senior author of the study. "The mutation rate we were working with is probably two orders of magnitude out, so we thought the last common ancestor of these modern B. pertussis strains was tens of thousands of years old when, in fact, it is much younger than that."

###

Notes to Editors

Publication Details

Marieke J Bart et al (2014) Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. mBio DOI:10.1128/mBio.01074-14

Funding

This work was supported by the Wellcome Trust (grant number 098051), the RIVM (SOR project S/230446/01/BV), and the National Health and Medical Research Council of Australia.

Participating Centres

A full list of participating centres can be found on the paper.

Selected Websites

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease.
http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests.
http://www.wellcome.ac.uk

Contact details

Don Powell Media Manager
Wellcome Trust Sanger Institute
Hinxton, Cambridge, CB10 1SA, UK
Tel +44 (0)1223 496 928
Mobile +44 (0)7753 7753 97
Email press.office@sanger.ac.uk

Mary Clarke | Eurek Alert!

Further reports about: Bordetella pertussis bacteria populations strains strategies symptoms vaccination vaccines

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>