Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel immune system-based gene therapy induces strong responses in metastatic melanoma, sarcoma

01.02.2011
Researchers have found that a novel form of personalized therapy that genetically engineers a patient's own anti-tumor immune cells to fight tumors could treat metastatic melanoma and metastatic synovial cell sarcoma, representing a potentially new therapeutic approach against these and other cancers.

The technique, called adoptive immunotherapy, works with the body's immune system to fight cancer. Immune cells, called T lymphocytes, are removed, modified, expanded in large numbers, and given back to the patient. In this case, the process entailed genetically engineering T cell lymphocytes to express receptors directed against a specific antigen on the cancer cell.

"We believe that this approach of adoptive immunotherapy is the most effective means for using the body's immune system to combat cancer," said senior study author Steven A. Rosenberg, MD, PhD, chief of the surgery branch at the National Cancer Institute. "This paper represents the first time that adoptive immunotherapy using genetically modified cells has been successfully used to treat a solid cancer other than melanoma because we are targeting an antigen present on many types of cancer."

The treatment resulted in response rates of 45 percent and 67 percent in malignant melanoma and synovial cell sarcoma patients, respectively.

In earlier trials, Rosenberg and colleagues used adoptive immunotherapy on treatment-resistant patients with metastatic melanoma who had extensive prior therapy. Of 93 patients studied, they found that more than half had measurable responses, including 20 with complete disappearance of all melanoma metastases.

In the current study, 17 patients with treatment-resistant metastatic melanoma or metastatic synovial cell sarcoma received therapy with their own immune T cells. The cells were genetically engineered to express a T cell receptor that recognized the NY-ESO-1 cancer-testes antigen on cancer cells. NY-ESO-1 is expressed in one quarter to one third of common epithelial cancers such as those of the breast, kidney, esophagus and other cancer types, and in about 80 percent of synovial cell sarcoma.

Four of six patients (67 percent) with synovial cell sarcoma and five of 11 (45 percent) melanoma patients had measurable tumor regression. Two of the 11 melanoma patients had complete regression lasting for more than one year. The treatments had minimal toxicity.

"The effectiveness of this treatment in patients with synovial cell sarcoma may mean that this new approach can be used for patients with other cancers as well," Rosenberg said, "And potentially lead to new types of immunotherapy. "

Rosenberg's group recently reported the first example of using adoptive immunotherapy to treat a patient with non-Hodgkin's lymphoma, and continues to explore different ways to genetically modify a patient's immune system to treat cancer. They have also recently published results showing that immune cells could be genetically modified to target and destroy the blood vessels supplying nutrients to tumors in experimental models.

ASCO Perspective: Sylvia Adams, MD, Member of ASCO's Cancer Communications Committee

"Several studies have suggested that transfusing immune system T cells can induce cancer regression in melanoma patients. Unlike prior studies, this study used engineered T cells specific for a tumor antigen that is carried by a variety of tumors, including sarcomas, lung cancer, ovarian cancer, malignant melanoma, and breast cancer. This approach broadens the applicability of the technique to several cancers and minimizes toxicity. The observed tumor shrinkage in patients with metastatic sarcoma and melanoma is promising, and if confirmed in additional clinical trials, this immunotherapy may become a new treatment option."

Helpful Links from Cancer.Net:

Understanding Immunotherapy
http://www.cancer.net/patient/All+About+Cancer/Cancer.Net+Feature+Articles/Treatments%2C+Tests%2C+and+Procedures/Understanding+Immunotherapy
Cancer.Net Guide to Melanoma
http://www.cancer.net/melanoma
Cancer.Net Guide to Sarcoma
http://www.cancer.net/sarcoma
The Journal of Clinical Oncology is the tri-monthly peer-reviewed journal of the American Society of Clinical Oncology (ASCO), the world's leading professional society representing physicians who treat people with cancer.

ATTRIBUTION TO THE JOURNAL OF CLINICAL ONCOLOGY IS REQUESTED IN ALL NEWS COVERAGE.

Kelly Powell | EurekAlert!
Further information:
http://www.asco.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>