Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification of the gene responsible for a new form of adult muscular dystrophy

22.01.2010
A study published in today's online edition the American Journal of Human Genetics, allowed the first identification of a new form of adult onset muscular dystrophy.

The research team led by Dr. Bernard Brais, neurogeneticist at the Research Centre of the Centre hospitalier de l'Université de Montréal (CRCHUM) and associate professor, Université de Montréal, in collaboration with European collaborators, demonstrated that recessive ANO5 mutations will lead to abnormal membrane repair of muscle fibers.

The continuous stress induced by contractions of muscles lead to tears of its membrane that need to be rapidly repaired. ''An understanding of how the loss of AN05 will lead to defective membrane repair will lead to better treatments of all muscular dystrophies were such abnormal process play a role. '', notes Dr. Brais.

In all the patients in the study, the researchers identified in all patients two recessive mutations inherited from both healthy parents. French Canadian cases were found to develop proximal limb girdle muscular dystrophy, usually in the thirties, while European cases developed a more distal non-dysferlin Miyoshi Myopathy (MMD3). One mutation appears to be more frequent in the Quebec population.

This is the first time Quebec researchers both describe a new form of muscular dystrophy and identify its causal gene.

Muscular dystrophy

Muscular dystrophy is the name for a group of neuromuscular disorders that are characterized by progressive weakness and wasting of the voluntary muscles that control body movement. As muscle tissue weakens and wastes away, it is replaced by fatty and connective tissue.*

This study was supported by grants from the American Muscular Dystrophy (MDA) founded more than 50 years ago by Jerry Lewis, Muscular Dystrophy Campaign (United Kingdom) and the Jain Foundation.

*Muscular Dystrophy Canada

Montreal, Canada, January 21, 2010 - A study published in today's online edition the American Journal of Human Genetics, is the first to identify a new form of adult onset muscular dystrophy. The research team led by Dr. Bernard Brais, neurogeneticist at the Research Centre of the Centre hospitalier de l'Université de Montréal (CRCHUM) and associate professor at the Université de Montréal, in collaboration with European scientists, demonstrated that recessive ANO5 mutations lead to abnormal membrane repair of muscle fibres.

The continuous stress induced by such muscle contractions lead to membrane tears that need to be rapidly repaired. ''An understanding of how the loss of AN05 will lead to defective membrane repair will lead to better treatments of all muscular dystrophies where such abnormal process play a role,'' notes Dr. Brais.

All participants of the study had two recessive mutations inherited from healthy parents that were identified by the scientific team. French Canadian cases were found to develop proximal limb girdle muscular dystrophy, usually in their 30s, while European cases developed a more distal non-dysferlin Miyoshi Myopathy (MMD3). Researchers also found one mutation that appears to be more frequent in the Quebec population.

This study represents the first time Quebec researchers both describe a new form of muscular dystrophy and identify its causal gene.

Muscular dystrophy

Muscular dystrophy is the name for a group of neuromuscular disorders that are characterized by progressive weakness and wasting of the voluntary muscles that control body movement. As muscle tissue weakens and wastes away, it is replaced by fatty and connective tissue (Muscular Dystrophy Canada).

Partners in research:

This study was supported by grants from the American Muscular Dystrophy (MDA) founded more than 50 years ago by Jerry Lewis, the Muscular Dystrophy Campaign (United Kingdom) and the Jain Foundation.

Source:
Nicole Beaulieu, M.A., ARP, FRSCP
Director of Communications
Centre hospitalier de l'Université de Montréal
Information:
Nathalie Forgue, M.A.
Communications Officer
514 890-8000, Ext. 14342
Pager : 514 801-5762
About the study:
- from 12:00: www.cell.com/AJHG/
or call Nathalie Forgue
About CRCHUM: www.crchum.qc.ca
About CHUM: www.chumontreal.qc.ca
About Université de Montréal: www.umontreal.ca

Nathalie Forgue | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>