Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Identification of the gene responsible for a new form of adult muscular dystrophy

22.01.2010
A study published in today's online edition the American Journal of Human Genetics, allowed the first identification of a new form of adult onset muscular dystrophy.

The research team led by Dr. Bernard Brais, neurogeneticist at the Research Centre of the Centre hospitalier de l'Université de Montréal (CRCHUM) and associate professor, Université de Montréal, in collaboration with European collaborators, demonstrated that recessive ANO5 mutations will lead to abnormal membrane repair of muscle fibers.

The continuous stress induced by contractions of muscles lead to tears of its membrane that need to be rapidly repaired. ''An understanding of how the loss of AN05 will lead to defective membrane repair will lead to better treatments of all muscular dystrophies were such abnormal process play a role. '', notes Dr. Brais.

In all the patients in the study, the researchers identified in all patients two recessive mutations inherited from both healthy parents. French Canadian cases were found to develop proximal limb girdle muscular dystrophy, usually in the thirties, while European cases developed a more distal non-dysferlin Miyoshi Myopathy (MMD3). One mutation appears to be more frequent in the Quebec population.

This is the first time Quebec researchers both describe a new form of muscular dystrophy and identify its causal gene.

Muscular dystrophy

Muscular dystrophy is the name for a group of neuromuscular disorders that are characterized by progressive weakness and wasting of the voluntary muscles that control body movement. As muscle tissue weakens and wastes away, it is replaced by fatty and connective tissue.*

This study was supported by grants from the American Muscular Dystrophy (MDA) founded more than 50 years ago by Jerry Lewis, Muscular Dystrophy Campaign (United Kingdom) and the Jain Foundation.

*Muscular Dystrophy Canada

Montreal, Canada, January 21, 2010 - A study published in today's online edition the American Journal of Human Genetics, is the first to identify a new form of adult onset muscular dystrophy. The research team led by Dr. Bernard Brais, neurogeneticist at the Research Centre of the Centre hospitalier de l'Université de Montréal (CRCHUM) and associate professor at the Université de Montréal, in collaboration with European scientists, demonstrated that recessive ANO5 mutations lead to abnormal membrane repair of muscle fibres.

The continuous stress induced by such muscle contractions lead to membrane tears that need to be rapidly repaired. ''An understanding of how the loss of AN05 will lead to defective membrane repair will lead to better treatments of all muscular dystrophies where such abnormal process play a role,'' notes Dr. Brais.

All participants of the study had two recessive mutations inherited from healthy parents that were identified by the scientific team. French Canadian cases were found to develop proximal limb girdle muscular dystrophy, usually in their 30s, while European cases developed a more distal non-dysferlin Miyoshi Myopathy (MMD3). Researchers also found one mutation that appears to be more frequent in the Quebec population.

This study represents the first time Quebec researchers both describe a new form of muscular dystrophy and identify its causal gene.

Muscular dystrophy

Muscular dystrophy is the name for a group of neuromuscular disorders that are characterized by progressive weakness and wasting of the voluntary muscles that control body movement. As muscle tissue weakens and wastes away, it is replaced by fatty and connective tissue (Muscular Dystrophy Canada).

Partners in research:

This study was supported by grants from the American Muscular Dystrophy (MDA) founded more than 50 years ago by Jerry Lewis, the Muscular Dystrophy Campaign (United Kingdom) and the Jain Foundation.

Source:
Nicole Beaulieu, M.A., ARP, FRSCP
Director of Communications
Centre hospitalier de l'Université de Montréal
Information:
Nathalie Forgue, M.A.
Communications Officer
514 890-8000, Ext. 14342
Pager : 514 801-5762
About the study:
- from 12:00: www.cell.com/AJHG/
or call Nathalie Forgue
About CRCHUM: www.crchum.qc.ca
About CHUM: www.chumontreal.qc.ca
About Université de Montréal: www.umontreal.ca

Nathalie Forgue | EurekAlert!
Further information:
http://www.umontreal.ca

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>