Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice Age's Arctic Tundra Lush with Wildflowers for Woolly Mammoths, Study Finds

11.02.2014
A recent study in the journal Nature finds that nearly 50,000 years ago during the ice age, the landscape was not as drab as once thought -- it was filled with colorful wildflowers. These wildflowers helped sustain woolly mammoths and other giant grazing animals.

The study, "Fifty thousand years of Arctic vegetation and megafauna diet," included Joseph Craine, assistant professor in the Division of Biology at Kansas State University. It was led by the Centre for GeoGenetics at the University of Copenhagen and was a collaboration of more than 25 academic institutions and research laboratories from around the world.

The study looked at 50,000 years of arctic vegetation history to understand how fauna had changed with animals and humans.

Historically, the belief is that the ice age's landscape was covered by largely grass-dominated systems -- called steppe. These grasses were replaced by mosses and other boggy vegetation when the ice age ended nearly 10,000 years ago, Craine said.

For the study, researchers visited museums in Alaska, Canada, Norway and Russia to collect DNA samples from inside the gut of frozen mammoths, bison, horses and rhinoceros that lived in the ice age.

Molecular techniques were used to look for plant DNA in each ancient animal's digestive tract. Plant DNA was then sequenced and reconstructed to differentiate wildflowers from grasses.

"Once the gut contents and soils started getting sequenced, they began finding lots more wildflowers than before," Craine said. "Nearly half of the digested plants were wildflowers. So, rather than having this really grassy, dull system like we believe existed, it suddenly was one that was very colorful."

The study challenges the view that the arctic landscape in the ice age was largely grasslands.

"Part of the scientific debate is knowing what the past looked like," Craine said. "There have always been debates about how a region that's so cold could have supported animals that were so large. Mammoths were huge and lived on these largely barren landscapes. Now we know that they were spending a lot of time eating wildflowers, which have a lot more protein in them than grasses, which means that they could support larger animals."

Craine helped interpret data and the consequences of losing bison and other grazing animals over thousands of years in parts of the world.

Although the findings reframe 50,000 years of the past, they also are applicable to predicting the future, Craine said.

Animals' grazing and climate changes stressed and eventually reshaped the vegetation in the tundra from wildflowers and grasses to moss and marshes, he said.

"The work is important because we can use the past to help us predict the future," Craine said. "But the work really makes us reevaluate how well we understand the diets of modern animals. If we misunderstood what bison and mammoths ate 15,000 years ago, maybe we should look more closely at what bison and elephants eat today. We just might find new surprises."

Joseph Craine | Newswise
Further information:
http://www.k-state.edu

Further reports about: Arctic Ocean DNA Tundra Woolly Adelgid crystalline ice age mammoths wildflowers

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>