Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybridising electricity grids with solar photovoltaic (PV) saves costs - New FS UNEP Study

01.06.2015

The Frankfurt School – UNEP Collaborating Centre for Climate & Sustainable Energy Finance has published a new study about economic benefits of hybridising diesel-powered electricity grids with solar photovoltaic (PV). In areas distant from main power grids, regional isolated grids – often referred to as mini-grids – are often the main source of electricity to industry and households. Power generation usually relies on diesel fuel, often imported over long distances. Yet generating costs can be reduced by hybridising these grids with PV or other renewable power sources.

On the basis of seven case studies in as many countries, this study finds that financing costs for a hybridisation project can be a major driver of electricity generation costs. Amongst other things, financing costs largely depend on the ownership structure of the power plant. “Relatively low ‘public sector’ return expectations can be assumed if the project is financed on the balance-sheet of a state-owned utility, and on concessional debt terms.


In this case, hybridisation could achieve significant cost reductions at all seven sites” says Torsten Becker, co-author of the study. However, assuming private sector return expectation – as possibly occurring if the hybrid is realised by an independent power producer (IPP) under a project finance structure – cost savings at six of seven sites would be insignificant or even negative.

Consequently, as Frankfurt School’s President Udo Steffens points out: “The analysis contributes to the very topical discussions on the affordability of climate change mitigation, and the challenges in crowding-in the private sector. It is part of our endeavour to advocate green energy without neglecting market realities and real economic costs.”

Diesel-powered grids can be hybridised using different types of system-integration technologies and renewable energy sources. This analysis compares diesel plants to a ‘100-percent-peak PV penetration’ hybrid technology, with which existing diesel generators can be switched off during peak availability of solar radiation.

The focus on this technology, however, is illustrative only, and does not imply its general advantage compared to other hybrid technologies (likewise, solar PV was selected as only one of several options for hybridisation).

Find the full Study online: “Renewable Energy in Hybrid Mini-Grids and Isolated Grids: Economic Benefits and Business Cases”.

Call for comments: The FS-UNEP Centre welcomes any feedback on the approach and results of this analysis. In particular, providers of other technologies are invited to get in touch with the Centre for a possible follow-up analysis of alternative hybrid solutions.

The Frankfurt School – UNEP Collaborating Centre for Climate & Sustainable Energy Finance is a strategic cooperation between Frankfurt School of Finance & Management and the United Nations Environment Programme (UNEP). It is committed to facilitating the necessary structural change of energy supply and use around the globe by helping to catalyse private sector capital flows towards investments in sustainable energy, climate change mitigation and adaptation. The hybrid study was furthermore supported by the International Renewable Energy Agency (IRENA) and Siemens AG.

About Frankfurt School of Finance & Management

Frankfurt School of Finance & Management is a research-led business school that is accredited by EQUIS and AACSB International. Frankfurt School offers educational programmes covering a wide variety of financial, economic and management subjects, including Bachelor’s and Master’s degree courses, a doctoral programme, executive education programmes, certification programmes, open seminars and training courses for professionals, and seminars and workshops for corporate and vocational trainees. In their research, Frankfurt School faculty members address topical issues in business, management, banking and finance. Furthermore, Frankfurt School experts manage advisory and training projects covering financial disciplines in emerging markets and developing countries, with particular focus on topics relating to microfinance and finance for energy from renewable sources. Frankfurt School’s Master of Finance programme is the only Master of Finance degree taught by a German business school to feature in the current Financial Times ranking (at number 20 in June 2014). In the Handelsblatt ranking published in December 2014, which rated the research credentials of German-language business studies lecturers and faculties, the Frankfurt School faculty took fifth place in Germany; several Frankfurt School professors were also awarded high individual rankings. In addition to the business school’s main campus in Frankfurt, Frankfurt School operates study centres in Hamburg and Munich, as well as international offices in Istanbul (Turkey), Dushanbe (Tajikistan), Beijing (China), Pune (India) and Nairobi (Kenya). Frankfurt School is a globally networked business school working with nearly 100 partner universities.

For more details, visit www.frankfurt-school.de

Weitere Informationen:

http://fs-unep-centre.org/publications/renewable-energy-hybrid-mini-grids-and-is...

Angelika Werner | idw - Informationsdienst Wissenschaft

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>