Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hybridising electricity grids with solar photovoltaic (PV) saves costs - New FS UNEP Study

01.06.2015

The Frankfurt School – UNEP Collaborating Centre for Climate & Sustainable Energy Finance has published a new study about economic benefits of hybridising diesel-powered electricity grids with solar photovoltaic (PV). In areas distant from main power grids, regional isolated grids – often referred to as mini-grids – are often the main source of electricity to industry and households. Power generation usually relies on diesel fuel, often imported over long distances. Yet generating costs can be reduced by hybridising these grids with PV or other renewable power sources.

On the basis of seven case studies in as many countries, this study finds that financing costs for a hybridisation project can be a major driver of electricity generation costs. Amongst other things, financing costs largely depend on the ownership structure of the power plant. “Relatively low ‘public sector’ return expectations can be assumed if the project is financed on the balance-sheet of a state-owned utility, and on concessional debt terms.


In this case, hybridisation could achieve significant cost reductions at all seven sites” says Torsten Becker, co-author of the study. However, assuming private sector return expectation – as possibly occurring if the hybrid is realised by an independent power producer (IPP) under a project finance structure – cost savings at six of seven sites would be insignificant or even negative.

Consequently, as Frankfurt School’s President Udo Steffens points out: “The analysis contributes to the very topical discussions on the affordability of climate change mitigation, and the challenges in crowding-in the private sector. It is part of our endeavour to advocate green energy without neglecting market realities and real economic costs.”

Diesel-powered grids can be hybridised using different types of system-integration technologies and renewable energy sources. This analysis compares diesel plants to a ‘100-percent-peak PV penetration’ hybrid technology, with which existing diesel generators can be switched off during peak availability of solar radiation.

The focus on this technology, however, is illustrative only, and does not imply its general advantage compared to other hybrid technologies (likewise, solar PV was selected as only one of several options for hybridisation).

Find the full Study online: “Renewable Energy in Hybrid Mini-Grids and Isolated Grids: Economic Benefits and Business Cases”.

Call for comments: The FS-UNEP Centre welcomes any feedback on the approach and results of this analysis. In particular, providers of other technologies are invited to get in touch with the Centre for a possible follow-up analysis of alternative hybrid solutions.

The Frankfurt School – UNEP Collaborating Centre for Climate & Sustainable Energy Finance is a strategic cooperation between Frankfurt School of Finance & Management and the United Nations Environment Programme (UNEP). It is committed to facilitating the necessary structural change of energy supply and use around the globe by helping to catalyse private sector capital flows towards investments in sustainable energy, climate change mitigation and adaptation. The hybrid study was furthermore supported by the International Renewable Energy Agency (IRENA) and Siemens AG.

About Frankfurt School of Finance & Management

Frankfurt School of Finance & Management is a research-led business school that is accredited by EQUIS and AACSB International. Frankfurt School offers educational programmes covering a wide variety of financial, economic and management subjects, including Bachelor’s and Master’s degree courses, a doctoral programme, executive education programmes, certification programmes, open seminars and training courses for professionals, and seminars and workshops for corporate and vocational trainees. In their research, Frankfurt School faculty members address topical issues in business, management, banking and finance. Furthermore, Frankfurt School experts manage advisory and training projects covering financial disciplines in emerging markets and developing countries, with particular focus on topics relating to microfinance and finance for energy from renewable sources. Frankfurt School’s Master of Finance programme is the only Master of Finance degree taught by a German business school to feature in the current Financial Times ranking (at number 20 in June 2014). In the Handelsblatt ranking published in December 2014, which rated the research credentials of German-language business studies lecturers and faculties, the Frankfurt School faculty took fifth place in Germany; several Frankfurt School professors were also awarded high individual rankings. In addition to the business school’s main campus in Frankfurt, Frankfurt School operates study centres in Hamburg and Munich, as well as international offices in Istanbul (Turkey), Dushanbe (Tajikistan), Beijing (China), Pune (India) and Nairobi (Kenya). Frankfurt School is a globally networked business school working with nearly 100 partner universities.

For more details, visit www.frankfurt-school.de

Weitere Informationen:

http://fs-unep-centre.org/publications/renewable-energy-hybrid-mini-grids-and-is...

Angelika Werner | idw - Informationsdienst Wissenschaft

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>