Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hunter-gatherers and immigrant farmers lived together for 2,000 years in Central Europe

11.10.2013
Stone Age parallel societies existed up to 5,000 years ago / Forager genes also found in today's Europeans

Indigenous hunter-gatherers and immigrant farmers lived side-by-side for more than 2,000 years in Central Europe, before the hunter-gatherer communities died out or adopted the agricultural lifestyle. The results come from a study undertaken by the Institute of Anthropology at Johannes Gutenberg University Mainz (JGU) that has just been published in the eminent journal Science.


Palaeogenetic research in the ultra-clean laboratory at Mainz University
photo/©: Thomas Hartmann, JGU

A team led by Mainz anthropologist Professor Joachim Burger studied bones from the 'Blätterhöhle' cave near Hagen in Germany, where both hunter-gatherers and farmers were buried. "It is commonly assumed that the Central European hunter-gatherers disappeared soon after the arrival of farmers", said Dr. Ruth Bollongino, lead author of the study.

"But our study shows that the descendants of Mesolithic Europeans maintained their hunter-gatherer way of life and lived in parallel with the immigrant farmers, for at least 2,000 years. The hunter-gathering lifestyle thus only died out in Central Europe around 5,000 years ago, much later than previously thought."

Until around 7,500 years ago all central Europeans were hunter-gatherers. They were the descendants of the first anatomically modern humans to arrive in Europe, around 45,000 years ago, who survived the last Ice Age and the warming that started around 10,000 years ago. But previous genetic studies by Professor Burger’s group indicated that agriculture and a sedentary lifestyle were brought to Central Europe around 7,500 years ago by immigrant farmers. From that time on, little trace of hunter-gathering can be seen in the archaeological record, and it was widely assumed that the hunter-gatherers died out or were absorbed into the farming populations.

The relationship between these immigrant agriculturalists and local hunter-gatherers has been poorly researched to date. The Mainz anthropologists have now determined that the foragers stayed in close proximity to farmers, had contact with them for thousands of years, and buried their dead in the same cave. This contact was not without consequences, because hunter-gatherer women sometimes married into the farming communities, while no genetic lines of farmer women have been found in hunter-gatherers. "This pattern of marriage is known from many studies of human populations in the modern world. Farmer women regarded marrying into hunter-gatherer groups as social anathema, maybe because of the higher birthrate among the farmers," explains Burger.

His palaeogenetics team is a worldwide leader in the field. For the study published in Science, the team examined the DNA from the bones from the 'Blätterhöhle' cave in Westphalia, which is being excavated by the Berlin archaeologist Jörg Orschiedt. It is one of the rare pieces of evidence of the continuing presence of foragers over a period of about 5,000 years.

For a long time the Mainz researchers were unable to make sense of the findings. "It was only through the analysis of isotopes in the human remains, performed by our Canadian colleagues, that the pieces of the puzzle began to fit," states Bollongino. "This showed that the hunter-gatherers sustained themselves in Central and Northern Europe on a very specialized diet that included fish, among other things, until 5,000 years ago.

The team also pursued the question of what impact both groups had on the gene pool of modern Europeans. Dr. Adam Powell, population geneticist at the JGU Institute of Anthropology, explains: "Neither hunter-gatherers nor farmers can be regarded as the sole ancestors of modern-day Central Europeans. European ancestry will reflect a mixture of both populations, and the ongoing question is how and to what extent this admixture happened."

It seems that the hunter-gatherers' lifestyle only died out in Central Europe 5,000 years ago. Agriculture and animal husbandry became the way of life from then on. However, some of the prehistoric farmers had foragers as ancestors, and the, hunter-gatherer genes are found in Central Europeans today.

Publication:
Ruth Bollongino et al., 2000 Years of Parallel Societies in Stone Age Central Europe, Science, 11 October 2013
Image:
www.uni-mainz.de/bilder_presse/10_anthropologie_palaeogenetik_labor.jpg
Palaeogenetic research in the ultra-clean laboratory at Mainz University
photo: Thomas Hartmann, JGU
Further information:
Dr. Ruth Bollongino
Professor Dr. Joachim Burger
Institute of Anthropology
Johannes Gutenberg University Mainz
D 55099 Mainz, GERMANY
phone +49 6131 39-20981
e-mail: bollongi@uni-mainz.de
http://www.uni-mainz.de/FB/Biologie/Anthropologie/MolA/English/Home/Home.html
Weitere Informationen:
http://www.sciencemag.org/content/326/5949/137.abstract
http://beanproject.eu/
http://www.mesolithikum-uni-koeln.com/projekte-1/dfg-projekt-blätterhöhle/
http://anth.ubc.ca/faculty-and-staff/michael-richards/
http://www.ucl.ac.uk/mace-lab/people/mark

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

A new dead zone in the Indian Ocean could impact future marine nutrient balance

06.12.2016 | Earth Sciences

Significantly more productivity in USP lasers

06.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>