Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans' critical ability to throw long distances aided by an illusion

24.01.2011
Can't help molding some snow into a ball and hurling it or tossing a stone as far into a lake as you can?

New research from Indiana University and the University of Wyoming shows how humans, unlike any other species on Earth, readily learn to throw long distances. This research also suggests that this unique evolutionary trait is entangled with language development in a way critical to our very existence.

The study, appearing online Jan. 14 in the journal "Evolution and Human Behavior," suggests that the well-established size-weight illusion, where a person who is holding two objects of equal weight will consider the larger object to be much lighter, is more than just curious or interesting, but a necessary precursor to humans' ability to learn to throw -- and to throw far.

Just as young children unknowingly experience certain perceptual auditory biases that help prepare them for language development, the researchers assert that the size-weight illusion primes children to learn to throw. It unwittingly gives them an edge -- helping them choose an object of size and weight most effective for throwing.

"These days we celebrate our unique throwing abilities on the football or baseball field or basketball court, but these abilities are a large part of what made us successful as a species," said Geoffrey Bingham, professor in IU's Department of Psychological and Brain Sciences. "It was not just language. It was language and throwing that led to the survival of Homo sapiens, and we are now beginning to gain some understanding of how these abilities are rapidly acquired by members of our species."

Why is throwing so important from an evolutionary standpoint? Bingham said Homo sapiens have been so successful as a species because of three factors: Social organization and cooperation, language, which helps with the former factor, and the ability to throw long distance. This trio allowed Homo sapiens to "take down all the potential competition," Bingham said. It brought us through the ice ages because Homo sapiens could hunt the only major food sources available, big game such as mammoths and giant sloths.

Bingham and Qin Zhu, lead author of the study and assistant professor at the University of Wyoming, Laramie, consider throwing and language in concert, because both require extremely well-coordinated timing and motor skills, which are facilitated by two uniquely developed brain structures -- the cerebellum and posterior parietal cortex.

"The idea here is that our speech and throwing capabilities came as a package," said Bingham, director of the Perception/Action Lab at IU. Language is special, and we acquire it very rapidly when young. Recent theories and evidence suggest that perceptual biases in auditory perception channel auditory development, so that we become attuned to the relevant acoustic units for speech. Our work on the size-weight illusion is now suggesting that a similar bias exists in object perception that corresponds to human readiness to acquire throwing skills."

Bingham and Zhu, who completed his doctorate in the Department of Kinesiology at IU's School of Health, Physical Education and Recreation, put their theory to the test, recruiting 12 adult men and women to perform various tests related to perception, the size-weight illusion and throwing prowess.

Another way of stating the size-weight illusion is that for someone to perceive that two objects -- one larger than the other -- weigh the same, the larger object must weigh significantly more than the smaller object. Their study findings show that skilled throwers use this illusion of 'equal felt' heaviness to select objects that they are able to throw to the farthest, maximum distance. This, says Bingham, suggests the phenomenon is not actually an illusion but instead a "highly useful and accurate perception."

Neanderthals, which co-existed with Homo sapiens long ago, lacked the more developed cerebellum and posterior parietal cortex.

"These brain structures have recently been found to distinguish Homo sapiens from Neanderthals," Bingham said. "It is possible that this is what enabled us to beat out Neanderthals, who otherwise had the larger brains."

For a copy of the study, contact Tracy James at 812-855-0084 or traljame@indiana.edu.

Bingham can be reached at 812-855-1544 and gbingham@indiana.edu. The Department of Psychological and Brain Sciences is in the IU College of Arts and Sciences. For additional assistance, contact Tracy James at 812-855-0084 and traljame@indiana.edu.

Geoffrey Bingham | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

Asian tiger mosquito on the move

22.05.2018 | Life Sciences

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>