Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Humans' critical ability to throw long distances aided by an illusion

Can't help molding some snow into a ball and hurling it or tossing a stone as far into a lake as you can?

New research from Indiana University and the University of Wyoming shows how humans, unlike any other species on Earth, readily learn to throw long distances. This research also suggests that this unique evolutionary trait is entangled with language development in a way critical to our very existence.

The study, appearing online Jan. 14 in the journal "Evolution and Human Behavior," suggests that the well-established size-weight illusion, where a person who is holding two objects of equal weight will consider the larger object to be much lighter, is more than just curious or interesting, but a necessary precursor to humans' ability to learn to throw -- and to throw far.

Just as young children unknowingly experience certain perceptual auditory biases that help prepare them for language development, the researchers assert that the size-weight illusion primes children to learn to throw. It unwittingly gives them an edge -- helping them choose an object of size and weight most effective for throwing.

"These days we celebrate our unique throwing abilities on the football or baseball field or basketball court, but these abilities are a large part of what made us successful as a species," said Geoffrey Bingham, professor in IU's Department of Psychological and Brain Sciences. "It was not just language. It was language and throwing that led to the survival of Homo sapiens, and we are now beginning to gain some understanding of how these abilities are rapidly acquired by members of our species."

Why is throwing so important from an evolutionary standpoint? Bingham said Homo sapiens have been so successful as a species because of three factors: Social organization and cooperation, language, which helps with the former factor, and the ability to throw long distance. This trio allowed Homo sapiens to "take down all the potential competition," Bingham said. It brought us through the ice ages because Homo sapiens could hunt the only major food sources available, big game such as mammoths and giant sloths.

Bingham and Qin Zhu, lead author of the study and assistant professor at the University of Wyoming, Laramie, consider throwing and language in concert, because both require extremely well-coordinated timing and motor skills, which are facilitated by two uniquely developed brain structures -- the cerebellum and posterior parietal cortex.

"The idea here is that our speech and throwing capabilities came as a package," said Bingham, director of the Perception/Action Lab at IU. Language is special, and we acquire it very rapidly when young. Recent theories and evidence suggest that perceptual biases in auditory perception channel auditory development, so that we become attuned to the relevant acoustic units for speech. Our work on the size-weight illusion is now suggesting that a similar bias exists in object perception that corresponds to human readiness to acquire throwing skills."

Bingham and Zhu, who completed his doctorate in the Department of Kinesiology at IU's School of Health, Physical Education and Recreation, put their theory to the test, recruiting 12 adult men and women to perform various tests related to perception, the size-weight illusion and throwing prowess.

Another way of stating the size-weight illusion is that for someone to perceive that two objects -- one larger than the other -- weigh the same, the larger object must weigh significantly more than the smaller object. Their study findings show that skilled throwers use this illusion of 'equal felt' heaviness to select objects that they are able to throw to the farthest, maximum distance. This, says Bingham, suggests the phenomenon is not actually an illusion but instead a "highly useful and accurate perception."

Neanderthals, which co-existed with Homo sapiens long ago, lacked the more developed cerebellum and posterior parietal cortex.

"These brain structures have recently been found to distinguish Homo sapiens from Neanderthals," Bingham said. "It is possible that this is what enabled us to beat out Neanderthals, who otherwise had the larger brains."

For a copy of the study, contact Tracy James at 812-855-0084 or

Bingham can be reached at 812-855-1544 and The Department of Psychological and Brain Sciences is in the IU College of Arts and Sciences. For additional assistance, contact Tracy James at 812-855-0084 and

Geoffrey Bingham | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>