Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans' critical ability to throw long distances aided by an illusion

24.01.2011
Can't help molding some snow into a ball and hurling it or tossing a stone as far into a lake as you can?

New research from Indiana University and the University of Wyoming shows how humans, unlike any other species on Earth, readily learn to throw long distances. This research also suggests that this unique evolutionary trait is entangled with language development in a way critical to our very existence.

The study, appearing online Jan. 14 in the journal "Evolution and Human Behavior," suggests that the well-established size-weight illusion, where a person who is holding two objects of equal weight will consider the larger object to be much lighter, is more than just curious or interesting, but a necessary precursor to humans' ability to learn to throw -- and to throw far.

Just as young children unknowingly experience certain perceptual auditory biases that help prepare them for language development, the researchers assert that the size-weight illusion primes children to learn to throw. It unwittingly gives them an edge -- helping them choose an object of size and weight most effective for throwing.

"These days we celebrate our unique throwing abilities on the football or baseball field or basketball court, but these abilities are a large part of what made us successful as a species," said Geoffrey Bingham, professor in IU's Department of Psychological and Brain Sciences. "It was not just language. It was language and throwing that led to the survival of Homo sapiens, and we are now beginning to gain some understanding of how these abilities are rapidly acquired by members of our species."

Why is throwing so important from an evolutionary standpoint? Bingham said Homo sapiens have been so successful as a species because of three factors: Social organization and cooperation, language, which helps with the former factor, and the ability to throw long distance. This trio allowed Homo sapiens to "take down all the potential competition," Bingham said. It brought us through the ice ages because Homo sapiens could hunt the only major food sources available, big game such as mammoths and giant sloths.

Bingham and Qin Zhu, lead author of the study and assistant professor at the University of Wyoming, Laramie, consider throwing and language in concert, because both require extremely well-coordinated timing and motor skills, which are facilitated by two uniquely developed brain structures -- the cerebellum and posterior parietal cortex.

"The idea here is that our speech and throwing capabilities came as a package," said Bingham, director of the Perception/Action Lab at IU. Language is special, and we acquire it very rapidly when young. Recent theories and evidence suggest that perceptual biases in auditory perception channel auditory development, so that we become attuned to the relevant acoustic units for speech. Our work on the size-weight illusion is now suggesting that a similar bias exists in object perception that corresponds to human readiness to acquire throwing skills."

Bingham and Zhu, who completed his doctorate in the Department of Kinesiology at IU's School of Health, Physical Education and Recreation, put their theory to the test, recruiting 12 adult men and women to perform various tests related to perception, the size-weight illusion and throwing prowess.

Another way of stating the size-weight illusion is that for someone to perceive that two objects -- one larger than the other -- weigh the same, the larger object must weigh significantly more than the smaller object. Their study findings show that skilled throwers use this illusion of 'equal felt' heaviness to select objects that they are able to throw to the farthest, maximum distance. This, says Bingham, suggests the phenomenon is not actually an illusion but instead a "highly useful and accurate perception."

Neanderthals, which co-existed with Homo sapiens long ago, lacked the more developed cerebellum and posterior parietal cortex.

"These brain structures have recently been found to distinguish Homo sapiens from Neanderthals," Bingham said. "It is possible that this is what enabled us to beat out Neanderthals, who otherwise had the larger brains."

For a copy of the study, contact Tracy James at 812-855-0084 or traljame@indiana.edu.

Bingham can be reached at 812-855-1544 and gbingham@indiana.edu. The Department of Psychological and Brain Sciences is in the IU College of Arts and Sciences. For additional assistance, contact Tracy James at 812-855-0084 and traljame@indiana.edu.

Geoffrey Bingham | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>