Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humanized mice may provide clues to better prevent and treat typhoid fever

23.09.2010
The model is based on transplanting human immune stem cells from umbilical blood into mice that are susceptible to infection

Better treatments and prevention for typhoid fever may emerge from a laboratory model that has just been developed for the disease. The model is based on transplanting human immune stem cells from umbilical cord blood into mice that are susceptible to infections.

The transplanted cells live alongside the mouse's own immune system. Although mice are normally resistant to the dangerous strain of Salmonella that causes typhoid fever, the bacteria are able to reproduce in the mice that have received transplanted human cells.

Because typhoid fever affects only humans, progress in creating more effective vaccines and medications has been limited, notes Dr. Ferric C. Fang, professor of laboratory medicine and microbiology at the University of Washington (UW) in Seattle and the senior scientist on the project. The new model enables scientists to study innovative approaches against the disease in a living system, before testing them on people.

The "humanized" mouse model for studying Salmonella typhi infections was reported recently in the Proceedings of the National Academy of Sciences. The lead author of the paper is Stephen J. Libby, research associate professor of laboratory medicine.

The World Health Organization estimates that more than 16,000,000 new cases of typhoid fever occur annually. More than 600,000 people die each year from the disease, which is transmitted through contaminated food or water. Making the situation worse, multi-drug resistant strains have emerged. Researchers are looking for new drugs to replace those that are no longer effective.

The current typhoid fever vaccines have protection rates ranging from 60 to 80 percent. The protection conferred by the present inoculation is short-lived, and doesn't have a booster effect, the researchers explained. The oral vaccine spoils easily if storage conditions aren't optimal – as is the case in many tropical countries where typhoid fever is common. It also requires multiple doses. Studies in travelers suggest that many fail to take the vaccine properly.

Most of what scientists know about how Salmonella causes disease comes from studying a strain called Salmonella typhimurium, which can infect both mice and humans.

However, Fang noted that Salmonella infections in mice have not been found to correlate well with human typhoid infections.

"The mouse Salmonella infection differs from human typhoid in a number of important respects," he said. Immunity to one strain is fundamentally distinct from immunity to the other. This complicates attempts to construct vaccines based on observations of mice infected with Salmonella typhimurium."

Fang added that Salmonella typhi, the cause of human typhoid fever, is highly adapted to people. It has evolved many ways to evade infection-fighting defenses inside humans. It can also enter and destroy disease-fighting cells. The bacteria induce inflammation where it is in their own self-interest, and suppress it when and where it might be a disadvantage, such as in the intestine. Salmonella has changed over time by acquiring new DNA, such as plasmids and bacteriophages, from other organisms. This borrowed DNA makes it more virulent to humans and other animal hosts.

The host-pathogen interactions in mouse typhoid and human typhoid fever are drastically removed from each other, Fang said.

The researchers demonstrated that human blood-forming cells engrafted into immune-deficient mice allowed the mice to be infected with the organism that causes human typhoid fever, and that the typhoid bacteria appeared to reproduce inside the human cells. The researchers were also able to use this model to look for genetic factors that the typhoid bacteria need to cause severe illness.

Based on their studies, the researchers believe that the new lab mouse model can provide an unprecedented opportunity to gain insights into how the human typhoid fever bacterium, Salmonella typhi, causes serious disease and to devise better strategies for the prevention of typhoid fever. Their research also demonstrates how mice engrafted with human stem cells can allow scientists to better understand human infections.

In addition to Fang and Libby, the researchers who collaborated on the model were Kelly Smith, Brad Cookson, Joyce E. Karlinsey, Traci L. Kinkel and Lisa Cummings at the UW School of Medicine, Michael A. Brehm and Dale L. Greiner of the University of Massachusetts School of Medicine; Leonard D. Shultz of The Jackson Laboratory, Bar Harbor, Maine; and Michael McClelland, Steffen Porwollik, and Rocio Canals of the Vaccine Research Institute of San Diego.

The work was supported by the National Institutes of Health, the Diabetes Endocrinology Research Center, the Juvenile Diabetes Research Foundation, and a Beatriu de Pinos fellowship.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>