Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How the woodpecker avoids brain injury despite high-speed impacts via optimal anti-shock body structure


Designing structures and devices that protect the body from shock and vibrations during high-velocity impacts is a universal challenge.

Scientists and engineers focusing on this challenge might make advances by studying the unique morphology of the woodpecker, whose body functions as an excellent anti-shock structure.

This is a schematic of the pecking process of a woodpecker and the Mises stress at different times: (a) and (e) are moments of readiness to peck; (b) and (d) are the moments of departure and return, respectively; (c) is the moment of collision; arrows on the beaks show velocity direction.

Credit: ©Science China Press

The woodpecker's brain can withstand repeated collisions and deceleration of 1200 g during rapid pecking. This anti-shock feature relates to the woodpecker's unique morphology and ability to absorb impact energy.

Using computed tomography and the construction of high-precision three-dimensional models of the woodpecker, Chinese scientists explain its anti-shock biomechanical structure in terms of energy distribution and conversion.

... more about:
»CT »ability »collisions »small »strain »structure »woodpecker

Their findings, presented in a new study titled "Energy conversion in the woodpecker on successive pecking and its role in anti-shock protection of the brain" and published in the Beijing-based journal SCIENCE CHINA Technological Sciences, could provide guidance in the design of anti-shock devices and structures for humans.

To build a sophisticated 3D model of the woodpecker, scientist Wu Chengwei and colleagues at the State Key Lab of Structural Analysis for Industrial Equipment, part of the Department of Engineering Mechanics at the Dalian University of Technology in northeastern China, scanned the structure of the woodpecker and replicated it in remarkable detail.

"CT scanning technology can be used to obtain the images of internal structures of objects … which is widely used in the medical field and expanded to mechanical modeling of biological tissue," they explain in the study.

"Based on the CT scanning technology (CT scanner, LightSpeed VCT XT, GE, USA), detailed inner structure images of the head were obtained and then imported to Mimics software to form a scattered-points model," they state. "Then a geometric model of the head was set up using the facet feature and remodeling module of Pro/E for the surface fitting. After the geometric repairs, the FE [finite element] model meshed by tetrahedron elements was established using Abaqus software."

The woodpecker's structure was recreated through intricate geometric modeling. "The final FE model has 940000 fine elements with a minimum size of 0.07 mm in the head, 70000 coarse elements with a maximum size of 3.5 mm in the body and 20000 elements with a minimum size of 0.16 mm in the trunk," the researchers state.

Discoveries made during the study could have applications in the design of spacecraft, automobiles, and wearable protective gear, explains Professor Wu.

"High-speed impacts and collisions can destroy structures and materials," Wu states. "In the aerospace industry, spacecraft face the constant danger of collisions with space debris and micrometeoroids," Wu adds. "If a spacecraft's structure or scientific instruments were destroyed by impact, the economic loss would be huge."

In cities worldwide, Wu says, automobile accidents are a persistent threat to human safety, and head injuries are common.

Challenges presented in minimizing these threats and injuries have led to widespread efforts to understand and replicate or improve on anti-shock mechanisms found in nature.

The woodpecker stands out in this field of study: it can peck trees at high frequency (up to 25 Hz) and high speed (up to 7 m/s and 1200 g deceleration) without suffering any brain injury.

"This unique anti-shock ability inspires scientists to uncover the related bio-mechanisms," Wu states, for potential engineering of similar devices and structures based on principles of biomimicry.

Wu and colleagues used 3D models of the woodpecker to test how impact energy was handled by its specially adapted structure.

Figure 1 shows the pecking process of a woodpecker and the Mises stress at different times.

The results showed that the body not only supports the woodpecker to peck on the tree, but also stores the majority of the impact energy in the form of strain energy, significantly reducing the quantity of impact energy that enters the brain.

"Most of the impact energy in the pecking is converted into the strain energy stored in the body (99.7%) and there is only a small fraction of it in the head (0.3%)," the researchers reported.

Structures in the head including the beak, skull, and hyoid bone further reduce the strain energy of the brain. The small fraction of impact energy that enters the brain will be eventually dissipated in form of heat, causing a rapid temperature increment in the brain. As a consequence of this, the woodpecker has to peck intermittently.


This research project received funding in the form of grants from the National Science Foundation of China (Grant No. 11272080), the Doctoral Education Foundation of China Education Ministry (Grant No. 20110041110021), and the Fundamental Research Funds for the Central Universities of China (Grant No. DUT14LK36).

See the article: Zhu Zhaodan, Zhang Wei and Wu Chengwei. "Energy conversion in the woodpecker on successive peckings and its role on anti-shock protection of the brain."

SCIENCE CHINA Technological Science. 2014, 57(7): 1269-1275.

SCIENCE CHINA Technological Science is produced by Science China Press, a leading publisher of scientific journals in China that operates under the auspices of the Chinese Academy of Sciences. Science China Press presents to the world leading-edge advancements made by Chinese scientists across a spectrum of fields.

Wu Chengwei | Eurek Alert!

Further reports about: CT ability collisions small strain structure woodpecker

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>