Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How the woodpecker avoids brain injury despite high-speed impacts via optimal anti-shock body structure

12.08.2014

Designing structures and devices that protect the body from shock and vibrations during high-velocity impacts is a universal challenge.

Scientists and engineers focusing on this challenge might make advances by studying the unique morphology of the woodpecker, whose body functions as an excellent anti-shock structure.


This is a schematic of the pecking process of a woodpecker and the Mises stress at different times: (a) and (e) are moments of readiness to peck; (b) and (d) are the moments of departure and return, respectively; (c) is the moment of collision; arrows on the beaks show velocity direction.

Credit: ©Science China Press

The woodpecker's brain can withstand repeated collisions and deceleration of 1200 g during rapid pecking. This anti-shock feature relates to the woodpecker's unique morphology and ability to absorb impact energy.

Using computed tomography and the construction of high-precision three-dimensional models of the woodpecker, Chinese scientists explain its anti-shock biomechanical structure in terms of energy distribution and conversion.

... more about:
»CT »ability »collisions »small »strain »structure »woodpecker

Their findings, presented in a new study titled "Energy conversion in the woodpecker on successive pecking and its role in anti-shock protection of the brain" and published in the Beijing-based journal SCIENCE CHINA Technological Sciences, could provide guidance in the design of anti-shock devices and structures for humans.

To build a sophisticated 3D model of the woodpecker, scientist Wu Chengwei and colleagues at the State Key Lab of Structural Analysis for Industrial Equipment, part of the Department of Engineering Mechanics at the Dalian University of Technology in northeastern China, scanned the structure of the woodpecker and replicated it in remarkable detail.

"CT scanning technology can be used to obtain the images of internal structures of objects … which is widely used in the medical field and expanded to mechanical modeling of biological tissue," they explain in the study.

"Based on the CT scanning technology (CT scanner, LightSpeed VCT XT, GE, USA), detailed inner structure images of the head were obtained and then imported to Mimics software to form a scattered-points model," they state. "Then a geometric model of the head was set up using the facet feature and remodeling module of Pro/E for the surface fitting. After the geometric repairs, the FE [finite element] model meshed by tetrahedron elements was established using Abaqus software."

The woodpecker's structure was recreated through intricate geometric modeling. "The final FE model has 940000 fine elements with a minimum size of 0.07 mm in the head, 70000 coarse elements with a maximum size of 3.5 mm in the body and 20000 elements with a minimum size of 0.16 mm in the trunk," the researchers state.

Discoveries made during the study could have applications in the design of spacecraft, automobiles, and wearable protective gear, explains Professor Wu.

"High-speed impacts and collisions can destroy structures and materials," Wu states. "In the aerospace industry, spacecraft face the constant danger of collisions with space debris and micrometeoroids," Wu adds. "If a spacecraft's structure or scientific instruments were destroyed by impact, the economic loss would be huge."

In cities worldwide, Wu says, automobile accidents are a persistent threat to human safety, and head injuries are common.

Challenges presented in minimizing these threats and injuries have led to widespread efforts to understand and replicate or improve on anti-shock mechanisms found in nature.

The woodpecker stands out in this field of study: it can peck trees at high frequency (up to 25 Hz) and high speed (up to 7 m/s and 1200 g deceleration) without suffering any brain injury.

"This unique anti-shock ability inspires scientists to uncover the related bio-mechanisms," Wu states, for potential engineering of similar devices and structures based on principles of biomimicry.

Wu and colleagues used 3D models of the woodpecker to test how impact energy was handled by its specially adapted structure.

Figure 1 shows the pecking process of a woodpecker and the Mises stress at different times.

The results showed that the body not only supports the woodpecker to peck on the tree, but also stores the majority of the impact energy in the form of strain energy, significantly reducing the quantity of impact energy that enters the brain.

"Most of the impact energy in the pecking is converted into the strain energy stored in the body (99.7%) and there is only a small fraction of it in the head (0.3%)," the researchers reported.

Structures in the head including the beak, skull, and hyoid bone further reduce the strain energy of the brain. The small fraction of impact energy that enters the brain will be eventually dissipated in form of heat, causing a rapid temperature increment in the brain. As a consequence of this, the woodpecker has to peck intermittently.

###

This research project received funding in the form of grants from the National Science Foundation of China (Grant No. 11272080), the Doctoral Education Foundation of China Education Ministry (Grant No. 20110041110021), and the Fundamental Research Funds for the Central Universities of China (Grant No. DUT14LK36).

See the article: Zhu Zhaodan, Zhang Wei and Wu Chengwei. "Energy conversion in the woodpecker on successive peckings and its role on anti-shock protection of the brain."

SCIENCE CHINA Technological Science. 2014, 57(7): 1269-1275. http://link.springer.com/article/10.1007%2Fs11431-014-5582-5

SCIENCE CHINA Technological Science is produced by Science China Press, a leading publisher of scientific journals in China that operates under the auspices of the Chinese Academy of Sciences. Science China Press presents to the world leading-edge advancements made by Chinese scientists across a spectrum of fields. http://www.scichina.com/english/

Wu Chengwei | Eurek Alert!

Further reports about: CT ability collisions small strain structure woodpecker

More articles from Studies and Analyses:

nachricht Researchers observe major hand hygiene problems in operating rooms
30.03.2015 | University of Gothenburg

nachricht Electric vehicle range in 450,000 kilometer real-world test
30.03.2015 | Technische Universität Chemnitz

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Biology in a twist -- deciphering the origins of cell behavior

31.03.2015 | Life Sciences

Wrapping carbon nanotubes in polymers enhances their performance

31.03.2015 | Materials Sciences

Research Links Two Millennia of Cyclones, Floods, El Niño

31.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>