Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How stress tears us apart

18.09.2014

A team from the EPFL Brain Mind Institute has discovered an important synaptic mechanism: the activation of a cleaving enzyme, leading to behavioral problems connected to chronic stress.

Why is it that when people are too stressed they are often grouchy, grumpy, nasty, distracted or forgetful? Researchers from the Brain Mind Institute (BMI) at EPFL have just highlighted a fundamental synaptic mechanism that explains the relationship between chronic stress and the loss of social skills and cognitive impairment. When triggered by stress, an enzyme attacks a synaptic regulatory molecule in the brain. This was revealed by a work published in Nature Communications.


Carmen Sandi's team at EPFL discovered an important synaptic mechanism in the effects of chronic stress. It causes the massive release of glutamate which acts on NMDA receptors, essential for synaptic plasticity. These receptors activate MMP-9 enzymes which, like scissors, cut the nectin-3 cell adhesion proteins. This prevents them from playing their regulatory role, making subjects less sociable and causing cognitive impairment.

Credit: EPFL

Carmen Sandi's team went to look for answers in a region of the hippocampus known for its involvement in behavior and cognitive skills. In there, scientists were interested in a molecule, the nectin-3 cell adhesion protein, whose role is to ensure adherence, at the synaptic level, between two neurons.

Positioned in the postsynaptic part, these proteins bind to the molecules of the presynaptic portion, thus ensuring the synaptic function. However, the researchers found that on rat models affected by chronic stress, nectin-3 molecules were significantly reduced in number.

The investigations conducted by the researchers led them to an enzyme involved in the process of protein degradation: MMP-9. It was already known that chronic stress causes a massive release of glutamate, a molecule that acts on NMDA receptors, which are essential for synaptic plasticity and thus for memory.

What these researchers found now is that these receptors activated the MMP-9 enzymes which, like scissors, literally cut the nectin-3 cell adhesion proteins. "When this happens, nectin-3 becomes unable to perform its role as a modulator of synaptic plasticity" explained Carmen Sandi. In turn, these effects lead subjects to lose their sociability, avoid interactions with their peers and have impaired memory or understanding.

The researchers, in conjunction with Polish neuroscientists, were able to confirm this mechanism in rodents both in vitro and in vivo. By means of external treatments that either activated nectin-3 or inhibited MMP-9, they showed that stressed subjectscould regain their sociability and normal cognitive skills.

"The identification of this mechanism is important because it suggests potential treatments for neuropsychiatric disorders related to chronic stress, particularly depression," said Carmen Sandi, member of the NCCR-Synapsy, which studies the neurobiological roots of psychiatric disorders.

Interestingly, MMP-9 expression is also involved in other pathologies, such as neurodegenerative diseases, including ALS or epilepsy. "This result opens new research avenues on the still unknown consequences of chronic stress," concluded Carmen Sandi, the BMI's director.

Carmen Sandi | Eurek Alert!
Further information:
http://www.epfl.ch/index.en.html

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>