Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Australia got the hump with 1 million feral camels

23.04.2014

A new study by a University of Exeter researcher has shed light on how an estimated one million-strong population of wild camels thriving in Australia's remote outback have become reviled as pests and culled on a large scale.

Sarah Crowley, of the Environment and Sustainability Institute at the University of Exeter's Penryn Campus, explored the history of the camel in Australia, from their historic role helping to create the country's infrastructure through to their current status as unwelcome "invader."


Camels played a significant role in the establishment of Australia's modern infrastructure, but rapidly lost their economic value in the early part of the 20th century and were either shot or released into the outback

Credit: James Northfield Heritage Art Trust ©

The deserts of the Australian outback are a notoriously inhospitable environment where few species can survive. But the dromedary camel (Camelus dromedarius) prospers where others perish, eating 80% of native plant species and obtaining much of their water through ingesting this vegetation.

Yet for numerous Australians, particularly ranchers, conservation managers, and increasingly local and national governments, camels are perceived as pests and extreme measures – including shooting them with rifles from helicopters – are being taken to reduce their population.

In her article, published in the journal Anthrozoös, Crowley proposes that today's Australian camels exemplify the idea of "animals out of place" and discusses how they have come to inhabit this precarious position.

She said: "Reports estimate there are upwards of a million free-ranging camels in Australia and predict that this number could double every eight years. As their population burgeons, camels encroach more frequently upon human settlements and agricultural lands, raising their media profile and increasing local animosity toward them."

The camel was first brought to Australia in the 1800s when the country was in the midst of a flurry of colonial activity. The animals were recognized by pioneers as the most appropriate mode of transport for the challenging environment because they require significantly less water, feed on a wider variety of vegetation, and are capable of carrying heavier loads than horses and donkeys.

Camels therefore played a significant role in the establishment of Australia's modern infrastructure, including the laying of the Darwin–Adelaide Overland Telegraph Line and the construction of the Transnational Railway.

Once this infrastructure was in place, however, and motorized transport became increasingly widespread, camels were no longer indispensable. In the early part of the 20th century they rapidly lost their economic value and their displaced handlers either shot their wards or released them into the outback where, quite discreetly, they thrived.

It was not until the 1980s that surveys hinted at the true extent of their numbers, and only in 2001 that reports of damage caused by camels were brought to the general populace.

Camels are not the most dainty of creatures. Dromedaries are on average six feet tall at the shoulder, rendering cattle fencing no particular obstacle to their movement. By some accounts, camels may not even see small fences and consequently walk straight through them.

Groups of camels arriving on agricultural properties and settlements in Australia, normally in times of severe drought, can also cause significant damage in their search for water.

In 2009, a large-scale culling operation began. There were objections from animal welfare groups and some landowners who were concerned that the method of culling from helicopters, leaving the bodies to waste, is inhumane. Most objectors, however, were primarily concerned that culling is economically wasteful and felt that the camels should be mustered for slaughter or export.

There are also concerns regarding the global environment, as camels may contribute to the desertification of the Australian landscape. They are also ruminants and thus produce methane, adding to Australia's carbon emissions. Crowley does not question the accuracy or significance of this, but points out that the environmental impacts of even 1,000,000 feral camels pales in comparison to that of the 28,500,000 cattle currently residing in the country. Still, when dust storms gathered over Sydney in 2009, media reports implied that the camel was the culprit.

Camels have in recent times been referred to in Australia as "humped pests," "a plague," a "real danger" and "menacing," and their actions described as "ravaging" and "marauding."

Crowley added: "These terms show how camels have suddenly been attributed agency – their crossing of acceptable human boundaries is somehow deemed purposeful and rebellious. These accusations lie in stark contrast to the praise laid upon those dromedaries who assisted colonists in the exploration and establishment of modern Australia, and highlight how temporal changes in culture—specifically, shifting economic and environmental values—have affected human interpretations of the presence, purpose, and even behavior of Australian camels."

###

'Camels out of place and time: the dromedary (Camelus dromedarius) in Australia' by Crowley, S. L. (2014) is published in the journal Anthrozoö. Available here: http://www.ingentaconnect.com/content/bloomsbury/azoos/2014/00000027/00000002/art00003

Eleanor Gaskarth | Eurek Alert!
Further information:
http://www.exeter.ac.uk

Further reports about: Australia Railway Sustainability animals construction environment movement species

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>