Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Houseplants cut indoor ozone

10.09.2009
Common plants could prove cost-effective alternatives for reducing ozone in offices, homes

Ozone, the main component of air pollution, or smog, is a highly reactive, colorless gas formed when oxygen reacts with other chemicals.

Although ozone pollution is most often associated with outdoor air, the gas also infiltrates indoor environments like homes and offices. Ozone can be released by ordinary copy machines, laser printers, ultraviolet lights, and some electrostatic air purification systems, all of which contribute to increased indoor ozone levels.

Topping the extensive list of toxic effects of ozone on humans are pulmonary edema, hemorrhage, inflammation, and reduction of lung function.

Because people in industrialized countries spend as much of 80% to 90% of their time indoors, indoor air pollution has been ranked as one of the world's greatest public health risks. The United Nations Development Program estimated (1998) that more than two million people die each year due to the presence of toxic indoor air, while other studies estimate that 14 times as many deaths occur globally from poor indoor air quality compared with outdoor air pollution. The economic consequences of polluted indoor air can't be ignored either; one Australian study estimated that the cost of unhealthy indoor air in that country exceeds $12 billion annually, measured in losses of worker productivity, higher medical costs, and increased absenteeism.

As indoor air pollution poses new concerns worldwide, cost effective and easy-to-implement methods are needed to eliminate or reduce ozone concentrations. Activated charcoal filters reduce air pollutants, but installation and maintenance costs can be high. Now, researchers are investigating alternatives—including the use of common houseplants—to improve indoor air quality and health.

A research team from the Pennsylvania State University published the results of a new study of the effects of three common houseplants on indoor ozone levels in a recent issue of the American Society of Horticultural Science's journal HortTechnology. The scientists chose snake plant, spider plant, and golden pothos for the experiment because of the plants' popularity (primarily due to their low cost, low maintenance, and rich foliage) and their reported ability to reduce other indoor air pollutants. The plants were studied to determine their effectiveness in reducing ozone concentrations in a simulated indoor environment.

To simulate an indoor environment, the researchers set up chambers in a greenhouse equipped with a charcoal filtration air supply system in which ozone concentrations could be measured and regulated. Ozone was then injected into the chambers, and the chambers were checked every 5 to 6 minutes. The data revealed that ozone depletion rates were higher in the chambers that contained plants than in the control chambers without plants, but there were no differences in effectiveness among the three plants.

"Because indoor air pollution extensively affects developing countries, using plants as a mitigation method could serve as a cost-effective tool in the developing world where expensive pollution mitigation technology may not be economically feasible", concluded the authors.

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/19/2/286

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>