Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Houseplants cut indoor ozone

10.09.2009
Common plants could prove cost-effective alternatives for reducing ozone in offices, homes

Ozone, the main component of air pollution, or smog, is a highly reactive, colorless gas formed when oxygen reacts with other chemicals.

Although ozone pollution is most often associated with outdoor air, the gas also infiltrates indoor environments like homes and offices. Ozone can be released by ordinary copy machines, laser printers, ultraviolet lights, and some electrostatic air purification systems, all of which contribute to increased indoor ozone levels.

Topping the extensive list of toxic effects of ozone on humans are pulmonary edema, hemorrhage, inflammation, and reduction of lung function.

Because people in industrialized countries spend as much of 80% to 90% of their time indoors, indoor air pollution has been ranked as one of the world's greatest public health risks. The United Nations Development Program estimated (1998) that more than two million people die each year due to the presence of toxic indoor air, while other studies estimate that 14 times as many deaths occur globally from poor indoor air quality compared with outdoor air pollution. The economic consequences of polluted indoor air can't be ignored either; one Australian study estimated that the cost of unhealthy indoor air in that country exceeds $12 billion annually, measured in losses of worker productivity, higher medical costs, and increased absenteeism.

As indoor air pollution poses new concerns worldwide, cost effective and easy-to-implement methods are needed to eliminate or reduce ozone concentrations. Activated charcoal filters reduce air pollutants, but installation and maintenance costs can be high. Now, researchers are investigating alternatives—including the use of common houseplants—to improve indoor air quality and health.

A research team from the Pennsylvania State University published the results of a new study of the effects of three common houseplants on indoor ozone levels in a recent issue of the American Society of Horticultural Science's journal HortTechnology. The scientists chose snake plant, spider plant, and golden pothos for the experiment because of the plants' popularity (primarily due to their low cost, low maintenance, and rich foliage) and their reported ability to reduce other indoor air pollutants. The plants were studied to determine their effectiveness in reducing ozone concentrations in a simulated indoor environment.

To simulate an indoor environment, the researchers set up chambers in a greenhouse equipped with a charcoal filtration air supply system in which ozone concentrations could be measured and regulated. Ozone was then injected into the chambers, and the chambers were checked every 5 to 6 minutes. The data revealed that ozone depletion rates were higher in the chambers that contained plants than in the control chambers without plants, but there were no differences in effectiveness among the three plants.

"Because indoor air pollution extensively affects developing countries, using plants as a mitigation method could serve as a cost-effective tool in the developing world where expensive pollution mitigation technology may not be economically feasible", concluded the authors.

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/19/2/286

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>