Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Houseplants cut indoor ozone

10.09.2009
Common plants could prove cost-effective alternatives for reducing ozone in offices, homes

Ozone, the main component of air pollution, or smog, is a highly reactive, colorless gas formed when oxygen reacts with other chemicals.

Although ozone pollution is most often associated with outdoor air, the gas also infiltrates indoor environments like homes and offices. Ozone can be released by ordinary copy machines, laser printers, ultraviolet lights, and some electrostatic air purification systems, all of which contribute to increased indoor ozone levels.

Topping the extensive list of toxic effects of ozone on humans are pulmonary edema, hemorrhage, inflammation, and reduction of lung function.

Because people in industrialized countries spend as much of 80% to 90% of their time indoors, indoor air pollution has been ranked as one of the world's greatest public health risks. The United Nations Development Program estimated (1998) that more than two million people die each year due to the presence of toxic indoor air, while other studies estimate that 14 times as many deaths occur globally from poor indoor air quality compared with outdoor air pollution. The economic consequences of polluted indoor air can't be ignored either; one Australian study estimated that the cost of unhealthy indoor air in that country exceeds $12 billion annually, measured in losses of worker productivity, higher medical costs, and increased absenteeism.

As indoor air pollution poses new concerns worldwide, cost effective and easy-to-implement methods are needed to eliminate or reduce ozone concentrations. Activated charcoal filters reduce air pollutants, but installation and maintenance costs can be high. Now, researchers are investigating alternatives—including the use of common houseplants—to improve indoor air quality and health.

A research team from the Pennsylvania State University published the results of a new study of the effects of three common houseplants on indoor ozone levels in a recent issue of the American Society of Horticultural Science's journal HortTechnology. The scientists chose snake plant, spider plant, and golden pothos for the experiment because of the plants' popularity (primarily due to their low cost, low maintenance, and rich foliage) and their reported ability to reduce other indoor air pollutants. The plants were studied to determine their effectiveness in reducing ozone concentrations in a simulated indoor environment.

To simulate an indoor environment, the researchers set up chambers in a greenhouse equipped with a charcoal filtration air supply system in which ozone concentrations could be measured and regulated. Ozone was then injected into the chambers, and the chambers were checked every 5 to 6 minutes. The data revealed that ozone depletion rates were higher in the chambers that contained plants than in the control chambers without plants, but there were no differences in effectiveness among the three plants.

"Because indoor air pollution extensively affects developing countries, using plants as a mitigation method could serve as a cost-effective tool in the developing world where expensive pollution mitigation technology may not be economically feasible", concluded the authors.

The complete study and abstract are available on the ASHS HortTechnology electronic journal web site: http://horttech.ashspublications.org/cgi/content/abstract/19/2/286

Founded in 1903, the American Society for Horticultural Science (ASHS) is the largest organization dedicated to advancing all facets of horticultural research, education, and application.

Michael W. Neff | EurekAlert!
Further information:
http://www.ashs.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>