Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For horned lizard, horns alone do not make the species

24.07.2009
California's horned lizard is 3 species, based on genetics, morphology and ecology

How do you recognize a new species?

A thorough study of the million-year evolution of California's horned lizards, sometimes referred to as "horny toads," shows that when it comes to distinguishing such recently diverged species, the most powerful method integrates genetic, anatomical and ecological information.

In the study, published this week in the early online edition of the journal Proceedings of the National Academy of Sciences, researchers from the University of California, Berkeley, and the U.S. Geological Survey consider all these criteria to show that when the coast horned lizard (Phrynosoma coronatum) moved north from Baja California and spread throughout the state, it diverged into at least two new species.

"When you stack up all the data sets, they all support three species," said lead author Adam Leaché, a recent UC Berkeley Ph.D. recipient who is now a National Science Foundation bioinformatics postdoctoral fellow at UC Davis. "If you were to pick only one data set, you would get a different number of species. One lesson we learned about the speciation process is that you can't rely on one type of data to accurately track a species' history."

Aside from the oldest and original species, P. coronatum, found only in southern Baja California, the researchers identified a new species, P. cerroense, in central Baja and a third, P. blainvillii, whose range extends from northern Baja to Northern California. Within the third, wide-ranging species, the study's authors found enough genetic and ecological differences to suggest there are at least three distinct populations of P. blainvillii, each requiring separate management and protection.

The findings have implications for conservation efforts, because coast horned lizard populations are in decline from southern Baja California to Northern California due to several factors. Among these are loss of lowland habitat from agriculture and urbanization and the introduction of Argentine ants, which displace the more nutritious harvester ants, the favored diet of the lizards. The lizard is on the International Union for Conservation of Nature's Red List of Threatened Species, as are California's two other horned lizards, the desert and flat-tailed horned lizards.

"For decades, it has not been clear what might be useful conservation units within the declining horned lizards in coastal California. Our study finally gives some clarity and direction for conservation actions to follow," said co-author Robert Fisher, a research biologist at the U.S. Geological Survey in San Diego, Calif.

For over 100 years, scientists have been trying to distinguish species among coast horned lizards, with the number of recognized species ranging from 1 to 6 depending on the author. These prior studies were reliant almost entirely on morphology. But when it comes to recently diverged species like the coast horned lizard, where morphological differences are subtle, it can be difficult to distinguish species, according to co-author Jimmy McGuire, UC Berkeley associate professor of integrative biology.

"This sort of analysis is going to be necessary in order to tackle questions of recent speciation," McGuire said. "Lineages that have been separated for a long time are not controversial – we have no trouble distinguishing chimps from humans, for example – but it is trickier with species that are younger and thus less morphologically heterogeneous."

"This could have an impact on the number of species that we recognize on the planet, because many species are young like this," he added.

In particular, the number of species in California could be substantially underestimated because even well-studied groups like horned lizards are likely to be comprised of multiple cryptic species, McGuire said. Studies integrating diverse data sets and focusing on the question of gene flow between lineages will almost certainly result in the discovery of many new species, he added.

Over the course of millions of years, populations of horned lizards migrating northward have separated and diverged from one another, producing an array of genetic lineages all along the western coast of North America that are adapted to unique ecological niches, according to the study.

"The genetic differences between the populations of horned lizards in California are striking – nobody could have predicted this high degree of differentiation simply by looking at the physical differences between the lizards," Leaché said.

Given enough time and continued environmental protection for the lizards to persist for the long-term, it's likely that the California horned lizards, like those in Baja California, will also evolve more dramatic physical differences through natural selection.

Leaché and McGuire, as well as the other UC Berkeley coauthors of the paper – Michelle S. Koo, Carol L. Spencer and Theodore J. Papenfuss – are affiliated with the campus's Museum of Vertebrate Zoology.

The study was funded by the National Science Foundation, The Nature Conservancy, California Department of Fish and Game, California Department of Parks and Recreation, Metropolitan Water District, U.S. Fish and Wildlife Service and U.S. Department of Defense.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>