Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hormone therapy plus physical activity reduce belly fat, body fat percentage after menopause

12.06.2009
Older women who take hormone therapy to relieve menopausal symptoms may get the added benefit of reduced body fat if they are physically active, according to a new study. The results were presented at The Endocrine Society's 91st Annual Meeting in Washington, D.C.

The study provides new information on the health benefits of any type of physical activity, not just exercise, said the presenting author Poli Mara Spritzer, MD, PhD, a professor at the Federal University of Rio Grande do Sul in Porto Alegre, Brazil, and chief of the Gynecological Endocrinology Unit at the university's Hospital de Clinicas de Porto Alegre.

After menopause, a woman's percentage of body fat tends to increase and redistribute to the abdomen, Spritzer said. Excess belly fat is a risk factor for diabetes and heart disease. Postmenopausal women who exercise have a lower percentage of body fat than sedentary women, past research shows. However, Spritzer said less is known about the influence on body fat composition of physical activity in women receiving hormone replacement therapy, or HRT. Some data suggest that estrogen treatment may add to the effect of exercise in reducing fat.

Spritzer and her colleagues studied 34 healthy women who had an average age of 51 years, had experienced menopause for less than 3 years and sought HRT to relieve hot flashes, night sweats and vaginal dryness. They evaluated the women's cholesterol levels, body mass index (BMI), waist circumference (a measure of abdominal fat) and percentage of body fat before and after 4 months of HRT. The women received estrogen plus progesterone therapy in either non-oral (nasal and vaginal) or low-dose oral preparations. For 6 consecutive days before starting HRT and 6 days at the end of HRT, women wore a pedometer to estimate their level of physical activity. The device measured the steps they took, including walking, working, and doing house chores and leisure activities. They were instructed to not change their usual activities. Most of the women did not play sports or do any structured physical exercise, according to Spritzer.

Results showed that 24 of the women were physically active—defined as taking 6,000 steps or more per day—and 10 were inactive (less than 6,000 steps a day). For a woman who has a step, or stride, length of 2 feet (60 cm), 6,000 steps would be around 2.25 miles (3.6 km), Spritzer estimated. For active women, the higher the number of steps they took, the lower was their waist measurement and the better their level of "good" (high-density-lipoprotein, or HDL) cholesterol, the authors reported. The inactive women did not have any changes in body fat or cholesterol. However, when all 34 women were considered in the analysis, body fat still declined significantly after HRT.

"Data from our study suggest that active women could benefit from hormone therapy beyond the relief of menopausal symptoms—by preserving a good body fat percentage and distribution," Spritzer said. "Further studies with a larger number of subjects are needed in order to answer whether a specific physical activity is better than others."

The Brazilian National Council for Science and Technology and the Brazilian National Institute of Hormones and Women's Health funded this study.

Aaron Lohr | EurekAlert!
Further information:
http://www.endo-society.org

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>