Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hopes for "tailor-made" MS treatment with Mitoxantrone

31.08.2009
Genetic information may enable personalized treatment schedule
Results obtained by neurologists in Bochum lead to BMBF-subsidized study

In view of the potential severe side effects of new immune therapies for multiple sclerosis (MS), research is now focused on the optimized use of established drugs with known side effect profiles. Neurologists in Bochum, working under the auspices of Associate Prof. Andrew Chan (RUB Clinic for Neurology, St. Josef Hospital, Director: Prof. Ralf Gold) are pursuing a pharmacogenetic approach.

They were able to prove that the genetic blueprint of specific transporter proteins allows one to draw conclusions on the effectiveness and risk of side effects of the potent agent mitoxantrone. They hope to be able to develop personalized treatment plans for each individual patient. The results of this study have been published in BRAIN.

Mitoxantrone: highly efficient escalation therapy in multiple sclerosis

According to data supplied by the German Multiple Sclerosis Society's national MS register (DMSG - Deutsche Multiple Sklerose Gesellschaft), up to 10% of German MS patients have been treated with mitoxantrone in the past few years. Numerous studies have shown that it is highly efficient in suppressing disease activity. It is administered as so-called escalation therapy when other medication no longer suffices and in extremely severe courses of the disease. The high therapeutic efficacy of this substance, which originates from oncology, is coupled with potential, in part dose-dependent side effects on the heart, reproductive organs but also on the bone marrow, thus the pros and cons of its administration must be weighted. Prof. Gold stated that, for this very reason, a lifetime maximum dose of mitoxantrone of 140 mg per m2 body surface may not be exceeded.

Signs of the involvement of drug carriers in the effectiveness

Former studies carried out by Dr. Chan and Prof. Gold and their research team had already shown that diverse immune cells respond differently to mitoxantrone. This led to the hypothesis that specific drug carriers - proteins that eliminate mitoxantrone from the cells - have different influences on different cells as well as on the effectiveness of the drug in different patients. The so-called ATP-binding cassette transporters = ABC transporters, thus became the most interesting aspect. The researchers assumed that less potent transporters are accompanied by a higher mitoxantrone concentration within the cells and thus higher effectiveness, and vice versa, that highly functional transporters reduce the effectiveness of the drug.

Genetic blueprint of the transporter influences the effectiveness

They went on to test this hypothesis on a group of MS patients from all over Europe (cooperation with clinics in Dresden, Berg, Göttingen, and Barcelona). It was shown that the differing genetic blueprints of ABC-transporters are indeed linked to the therapeutic response to mitoxantrone. The probability of the patient group with a genetic disposition to low transporter activity responding positively to mitoxantrone is 3,5 times higher than in the group with genetically caused higher transporter activity. Moreover, the functional effects of these genotypes were also confirmed in cell culture experiments and in the MS animal model. Dr. Chan pointed out that the first data gained is also indicative of a correlation between the genetic blueprint of the transporter protein and the side effects of mitoxantrone, for example in isolated cases with cardiac side effects.

Extensive study in the competence network MS should confirm results

Dr. Chan explained, "These results furnish hope for personalized mitoxantrone therapy schedules, for example with adapted single doses. This could also result in longer-term total therapy times being possible, a factor which is particularly important because corresponding follow-up therapy periods have not yet been clearly established." The results of the retrospective study must however first be confirmed in a prospective manner on a large group of patients. The corresponding study within the frameworks of the nation-wide competence network MS, which is subsidized by the Federal Ministry of Education and Research (BMBF - Bundesforschungsministerium), will moreover also investigate further potential pharmacogenetic markers in correlation with mitoxantrone treatment. Prof. Gold and Dr. Chan explained that their primary target is the establishment of a personalized MS treatment strategy for every patient taking the individual aspects of the patient into consideration. These investigations may make it possible to incorporate individual genetic patterns in the decision on the therapy.

Title

Cotte S, von Ahsen N, Kruse N, Huber B, Winkelmann A, Zettl UK, Starck M, König N, Tellez N, Dörr J, Paul F, Zipp F, Lühder F, Koepsell H, Pannek H, Montalban X, Gold R, Chan A: ABC-transporter gene-polymorphisms are potential pharmacogenetic markers for mitoxantrone response in multiple sclerosis. In: Brain, epub ahead of print, Jul 15, doi:10.1093/brain/awp164

Further Information

Associate Professor Dr. Andrew Chan, Neurological Clinic at the Ruhr-University Bochum in St. Josef Hospital, Gudrunstraße 56, 44791 Bochum, Tel.: 0234/509-2411, Fax: 0234/509-2414, E-Mail: Andrew.Chan@rub.de

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>