Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hop, skip or jump? Study says no to all of the above

18.04.2013
MIT engineers find that in the earliest stages of arthritis, high-impact exercise may worsen cartilage damage.

Osteoarthritis, which affects at least 20 percent of adults in the United States, leads to deterioration of cartilage, the rubbery tissue that prevents bones from rubbing together. By studying the molecular properties of cartilage, MIT engineers have now discovered how the earliest stages of arthritis make the tissue more susceptible to damage from physical activities such as running or jumping.

The findings could help researchers develop tests to diagnose arthritis earlier in patients at high risk for the disease and also guide engineers in designing replacement cartilage. The results also suggest that athletes who suffer traumatic knee injuries, such as a torn anterior cruciate ligament (ACL) — which gives them a greater chance of developing arthritis later in life — should be cautious when returning to their sport following surgery.

“It’s a clear signal to be careful of going right back out,” says Alan Grodzinsky, an MIT professor of biological, electrical and mechanical engineering and senior author of a paper describing the findings in a recent issue of the Biophysical Journal. “Even though your knee may be stabilized, there’s the possibility that deformation of cartilage at a high loading rate is still going to put it at risk.”

Cartilage is packed with protein-sugar complexes known as aggrecans, each made of about 100 highly charged molecules called glycosaminoglycans (GAGs). Those molecules protect joints by absorbing water and causing the tissue to stiffen as pressure is applied.

“The cartilage is a stiff sponge, filled with fluid, and as we compress it, fluid has to percolate through these closely spaced GAG chains,” Grodzinsky says. “The GAG chains provide resistance to flow, so the water can’t get out of our cartilage instantly when we compress it. That pressurization at the nanoscale increases the stiffness of our cartilage to high-loading-rate activities.”

The MIT team set out to investigate how the molecular structure of GAG generates this stiffening over such a wide range of activity — from sitting and doing nothing to running or jumping at high speed. To do this, they developed a new, highly sensitive type of atomic force microscopy (AFM), allowing them to measure how aggrecan reacts at the nanoscale to very high loading rates (the speeds at which forces are applied).

Conventional AFM, which generates high-resolution images by “feeling” the surface of a sample with a tiny probe tip, can also be used to subject samples to cyclic loading to measure their nanomechanical properties. But conventional AFM can apply only up to about 300 hertz (cycles per second). Hadi Tavakoli Nia, the lead author of the paper, and Iman Soltani Bozchalooi, both graduate students in mechanical engineering, developed a modified system that can apply much higher frequencies — up to 10 kilohertz, frequencies relevant to impact loading of joints.

‘A very floppy sponge’

Using this system, the researchers compared normal cartilage and cartilage treated with an enzyme that destroys GAG chains, mimicking the initial stages of osteoarthritis. In this early phase, collagen, which gives cartilage its structure, is usually still intact.

The researchers found that when exposed to very high loading rates — similar to what would be seen during running or jumping — normal cartilage was able to absorb fluid and stiffen normally. However, in the GAG-depleted tissue, fluid leaked out rapidly.

“That’s what puts the collagen in trouble, because now this becomes a very floppy sponge, and if you load it at higher rates the collagen network can be damaged,” Grodzinsky says. “At that point you begin an irreversible series of activities that can result in damage to the collagen and eventually osteoarthritis.”

There is currently no good way to diagnose arthritis during those early stages, which are usually painfree. Many researchers are working to further improve magnetic resonance imaging (MRI) to test for loss of aggrecan, while others are looking for blood or urine markers. If such a test existed, it would be especially useful for monitoring patients who have experienced an acute knee injury. It is estimated that at least 12 percent of all osteoarthritis cases originated with a traumatic joint injury, Grodzinsky says.

Researchers in Grodzinsky’s lab are now working to identify possible drugs that might halt the loss of aggrecan, as well as designing tissue scaffolds that could be implanted into patients who need cartilage-replacement surgery. The new AFM system should be useful for testing these scaffolds, to see if cells grown on the scaffold can produce the necessary tissue stiffening at high loading rates.

“These two aspects are really important: preventing cartilage degradation after injury and, if the cartilage is already damaged beyond its ability to be repaired, replacing it,” Grodzinsky says.

Other authors of the paper are Yang Li, a graduate student in biological engineering; Lin Han, a former MIT postdoc; Han-Hwa Hung, a research specialist in biological engineering; Eliot Frank, a principal research engineer in biological engineering; Kamal Youcef-Toumi, a professor of mechanical engineering; and Christine Ortiz, a professor of materials science and engineering and MIT’s dean for graduate education.

The research was funded by a Whitaker Foundation Fellowship, the National Science Foundation and the National Institutes of Health.

Written by: Anne Trafton, MIT News Office

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>