Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hop, skip or jump? Study says no to all of the above

18.04.2013
MIT engineers find that in the earliest stages of arthritis, high-impact exercise may worsen cartilage damage.

Osteoarthritis, which affects at least 20 percent of adults in the United States, leads to deterioration of cartilage, the rubbery tissue that prevents bones from rubbing together. By studying the molecular properties of cartilage, MIT engineers have now discovered how the earliest stages of arthritis make the tissue more susceptible to damage from physical activities such as running or jumping.

The findings could help researchers develop tests to diagnose arthritis earlier in patients at high risk for the disease and also guide engineers in designing replacement cartilage. The results also suggest that athletes who suffer traumatic knee injuries, such as a torn anterior cruciate ligament (ACL) — which gives them a greater chance of developing arthritis later in life — should be cautious when returning to their sport following surgery.

“It’s a clear signal to be careful of going right back out,” says Alan Grodzinsky, an MIT professor of biological, electrical and mechanical engineering and senior author of a paper describing the findings in a recent issue of the Biophysical Journal. “Even though your knee may be stabilized, there’s the possibility that deformation of cartilage at a high loading rate is still going to put it at risk.”

Cartilage is packed with protein-sugar complexes known as aggrecans, each made of about 100 highly charged molecules called glycosaminoglycans (GAGs). Those molecules protect joints by absorbing water and causing the tissue to stiffen as pressure is applied.

“The cartilage is a stiff sponge, filled with fluid, and as we compress it, fluid has to percolate through these closely spaced GAG chains,” Grodzinsky says. “The GAG chains provide resistance to flow, so the water can’t get out of our cartilage instantly when we compress it. That pressurization at the nanoscale increases the stiffness of our cartilage to high-loading-rate activities.”

The MIT team set out to investigate how the molecular structure of GAG generates this stiffening over such a wide range of activity — from sitting and doing nothing to running or jumping at high speed. To do this, they developed a new, highly sensitive type of atomic force microscopy (AFM), allowing them to measure how aggrecan reacts at the nanoscale to very high loading rates (the speeds at which forces are applied).

Conventional AFM, which generates high-resolution images by “feeling” the surface of a sample with a tiny probe tip, can also be used to subject samples to cyclic loading to measure their nanomechanical properties. But conventional AFM can apply only up to about 300 hertz (cycles per second). Hadi Tavakoli Nia, the lead author of the paper, and Iman Soltani Bozchalooi, both graduate students in mechanical engineering, developed a modified system that can apply much higher frequencies — up to 10 kilohertz, frequencies relevant to impact loading of joints.

‘A very floppy sponge’

Using this system, the researchers compared normal cartilage and cartilage treated with an enzyme that destroys GAG chains, mimicking the initial stages of osteoarthritis. In this early phase, collagen, which gives cartilage its structure, is usually still intact.

The researchers found that when exposed to very high loading rates — similar to what would be seen during running or jumping — normal cartilage was able to absorb fluid and stiffen normally. However, in the GAG-depleted tissue, fluid leaked out rapidly.

“That’s what puts the collagen in trouble, because now this becomes a very floppy sponge, and if you load it at higher rates the collagen network can be damaged,” Grodzinsky says. “At that point you begin an irreversible series of activities that can result in damage to the collagen and eventually osteoarthritis.”

There is currently no good way to diagnose arthritis during those early stages, which are usually painfree. Many researchers are working to further improve magnetic resonance imaging (MRI) to test for loss of aggrecan, while others are looking for blood or urine markers. If such a test existed, it would be especially useful for monitoring patients who have experienced an acute knee injury. It is estimated that at least 12 percent of all osteoarthritis cases originated with a traumatic joint injury, Grodzinsky says.

Researchers in Grodzinsky’s lab are now working to identify possible drugs that might halt the loss of aggrecan, as well as designing tissue scaffolds that could be implanted into patients who need cartilage-replacement surgery. The new AFM system should be useful for testing these scaffolds, to see if cells grown on the scaffold can produce the necessary tissue stiffening at high loading rates.

“These two aspects are really important: preventing cartilage degradation after injury and, if the cartilage is already damaged beyond its ability to be repaired, replacing it,” Grodzinsky says.

Other authors of the paper are Yang Li, a graduate student in biological engineering; Lin Han, a former MIT postdoc; Han-Hwa Hung, a research specialist in biological engineering; Eliot Frank, a principal research engineer in biological engineering; Kamal Youcef-Toumi, a professor of mechanical engineering; and Christine Ortiz, a professor of materials science and engineering and MIT’s dean for graduate education.

The research was funded by a Whitaker Foundation Fellowship, the National Science Foundation and the National Institutes of Health.

Written by: Anne Trafton, MIT News Office

Sarah McDonnell | EurekAlert!
Further information:
http://www.mit.edu

More articles from Studies and Analyses:

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>