Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hong Kong Skyscrapers Appear to Fall in Real-World Illusion

21.06.2013
No matter how we jump, roll, sit, or lie down, our brain manages to maintain a visual representation of the world that stays upright relative to the pull of gravity.
But a new study of rider experiences on the Hong Kong Peak Tram, a popular tourist attraction, shows that specific features of the environment can dominate our perception of verticality, making skyscrapers appear to fall.

The study is published in Psychological Science, a journal of the Association for Psychological Science.

The Hong Kong Peak Tram to Victoria Peak is a popular way to survey the Hong Kong skyline and millions of people ride the tram every year.

“On one trip, I noticed that the city’s skyscrapers next to the tram started to appear very tilted, as if they were falling, which anyone with common sense knows is impossible,” says lead researcher Chia-huei Tseng of the University of Hong Kong. “The gasps of the other passengers told me I wasn’t the only one seeing it.”

In this schematic diagram of the illusion, the angle è illustrates the approximate deviation of the perceived tilt relative to gravity for a mountain slope of á.

The illusion was perplexing because, in contrast with most illusions studied in the laboratory, observers have complete access to visual cues from the outside world through the tram’s open windows.

Exploring the illusion under various conditions, Tseng and colleagues found that the perceived, or illusory, tilt was greatest on night-time rides, perhaps a result of the relative absence of visual-orientation cues or a heightened sense of enclosure at night. Enhancing the tilted frame of reference within the tram car — indicated by features like oblique window frames, beams, floor, and lighting fixtures — makes the true vertical of the high rises seem to tilt in the opposite direction.

The illusion was significantly reduced by obscuring the window frame and other reference cues inside the tram car, by using wedges to adjust observers’ position, and by having them stand during the tram ride.

But no single modification was sufficient to eliminate the illusion.

“Our findings demonstrate that signals from all the senses must be consonant with each other to abolish the tilt illusion,” the researchers write. “On the tram, it seems that vision dominates verticality perception over other sensory modalities that also mediate earth gravity, such as the vestibular and tactile systems.”

The robustness of the tram illusion took the researchers by surprise:

“We took the same tram up and down for hundreds of trips, and the illusion did not reduce a bit,” says Tseng. “This suggests that our experiences and our learned knowledge about the world — that buildings should be vertical — are not enough to cancel our brain’s wrong conclusion.”

Co-authors on the study include Hiu Mei Chow of the University of Hong Kong and Lothar Spillmann of China Medical University and the University of Freiburg.

The study was supported by grants from the Hong Kong Grant Research Council and the University of Hong Kong Seed Funding Programme for Basic Research to Chia-huei Tseng, and by awards from the Serena Yang Educational Fund and the Deutscher Akademischer Austauschdienst (German Academic Exchange Council) and National Science Council of Taiwan to Lothar Spillmann.

For more information about this study, please contact: Chia-huei Tseng at ch_tseng@alumni.uci.edu.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Falling Skyscrapers: When Cross-Modal Perception of Verticality Fails" and access to other Psychological Science research findings, please contact Anna Mikulak at 202-293-9300 or amikulak@psychologicalscience.org.

Anna Mikulak | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>