Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hong Kong Skyscrapers Appear to Fall in Real-World Illusion

21.06.2013
No matter how we jump, roll, sit, or lie down, our brain manages to maintain a visual representation of the world that stays upright relative to the pull of gravity.
But a new study of rider experiences on the Hong Kong Peak Tram, a popular tourist attraction, shows that specific features of the environment can dominate our perception of verticality, making skyscrapers appear to fall.

The study is published in Psychological Science, a journal of the Association for Psychological Science.

The Hong Kong Peak Tram to Victoria Peak is a popular way to survey the Hong Kong skyline and millions of people ride the tram every year.

“On one trip, I noticed that the city’s skyscrapers next to the tram started to appear very tilted, as if they were falling, which anyone with common sense knows is impossible,” says lead researcher Chia-huei Tseng of the University of Hong Kong. “The gasps of the other passengers told me I wasn’t the only one seeing it.”

In this schematic diagram of the illusion, the angle è illustrates the approximate deviation of the perceived tilt relative to gravity for a mountain slope of á.

The illusion was perplexing because, in contrast with most illusions studied in the laboratory, observers have complete access to visual cues from the outside world through the tram’s open windows.

Exploring the illusion under various conditions, Tseng and colleagues found that the perceived, or illusory, tilt was greatest on night-time rides, perhaps a result of the relative absence of visual-orientation cues or a heightened sense of enclosure at night. Enhancing the tilted frame of reference within the tram car — indicated by features like oblique window frames, beams, floor, and lighting fixtures — makes the true vertical of the high rises seem to tilt in the opposite direction.

The illusion was significantly reduced by obscuring the window frame and other reference cues inside the tram car, by using wedges to adjust observers’ position, and by having them stand during the tram ride.

But no single modification was sufficient to eliminate the illusion.

“Our findings demonstrate that signals from all the senses must be consonant with each other to abolish the tilt illusion,” the researchers write. “On the tram, it seems that vision dominates verticality perception over other sensory modalities that also mediate earth gravity, such as the vestibular and tactile systems.”

The robustness of the tram illusion took the researchers by surprise:

“We took the same tram up and down for hundreds of trips, and the illusion did not reduce a bit,” says Tseng. “This suggests that our experiences and our learned knowledge about the world — that buildings should be vertical — are not enough to cancel our brain’s wrong conclusion.”

Co-authors on the study include Hiu Mei Chow of the University of Hong Kong and Lothar Spillmann of China Medical University and the University of Freiburg.

The study was supported by grants from the Hong Kong Grant Research Council and the University of Hong Kong Seed Funding Programme for Basic Research to Chia-huei Tseng, and by awards from the Serena Yang Educational Fund and the Deutscher Akademischer Austauschdienst (German Academic Exchange Council) and National Science Council of Taiwan to Lothar Spillmann.

For more information about this study, please contact: Chia-huei Tseng at ch_tseng@alumni.uci.edu.

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Falling Skyscrapers: When Cross-Modal Perception of Verticality Fails" and access to other Psychological Science research findings, please contact Anna Mikulak at 202-293-9300 or amikulak@psychologicalscience.org.

Anna Mikulak | EurekAlert!
Further information:
http://www.psychologicalscience.org

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>