Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Hong Kong Skyscrapers Appear to Fall in Real-World Illusion

No matter how we jump, roll, sit, or lie down, our brain manages to maintain a visual representation of the world that stays upright relative to the pull of gravity.
But a new study of rider experiences on the Hong Kong Peak Tram, a popular tourist attraction, shows that specific features of the environment can dominate our perception of verticality, making skyscrapers appear to fall.

The study is published in Psychological Science, a journal of the Association for Psychological Science.

The Hong Kong Peak Tram to Victoria Peak is a popular way to survey the Hong Kong skyline and millions of people ride the tram every year.

“On one trip, I noticed that the city’s skyscrapers next to the tram started to appear very tilted, as if they were falling, which anyone with common sense knows is impossible,” says lead researcher Chia-huei Tseng of the University of Hong Kong. “The gasps of the other passengers told me I wasn’t the only one seeing it.”

In this schematic diagram of the illusion, the angle è illustrates the approximate deviation of the perceived tilt relative to gravity for a mountain slope of á.

The illusion was perplexing because, in contrast with most illusions studied in the laboratory, observers have complete access to visual cues from the outside world through the tram’s open windows.

Exploring the illusion under various conditions, Tseng and colleagues found that the perceived, or illusory, tilt was greatest on night-time rides, perhaps a result of the relative absence of visual-orientation cues or a heightened sense of enclosure at night. Enhancing the tilted frame of reference within the tram car — indicated by features like oblique window frames, beams, floor, and lighting fixtures — makes the true vertical of the high rises seem to tilt in the opposite direction.

The illusion was significantly reduced by obscuring the window frame and other reference cues inside the tram car, by using wedges to adjust observers’ position, and by having them stand during the tram ride.

But no single modification was sufficient to eliminate the illusion.

“Our findings demonstrate that signals from all the senses must be consonant with each other to abolish the tilt illusion,” the researchers write. “On the tram, it seems that vision dominates verticality perception over other sensory modalities that also mediate earth gravity, such as the vestibular and tactile systems.”

The robustness of the tram illusion took the researchers by surprise:

“We took the same tram up and down for hundreds of trips, and the illusion did not reduce a bit,” says Tseng. “This suggests that our experiences and our learned knowledge about the world — that buildings should be vertical — are not enough to cancel our brain’s wrong conclusion.”

Co-authors on the study include Hiu Mei Chow of the University of Hong Kong and Lothar Spillmann of China Medical University and the University of Freiburg.

The study was supported by grants from the Hong Kong Grant Research Council and the University of Hong Kong Seed Funding Programme for Basic Research to Chia-huei Tseng, and by awards from the Serena Yang Educational Fund and the Deutscher Akademischer Austauschdienst (German Academic Exchange Council) and National Science Council of Taiwan to Lothar Spillmann.

For more information about this study, please contact: Chia-huei Tseng at

The APS journal Psychological Science is the highest ranked empirical journal in psychology. For a copy of the article "Falling Skyscrapers: When Cross-Modal Perception of Verticality Fails" and access to other Psychological Science research findings, please contact Anna Mikulak at 202-293-9300 or

Anna Mikulak | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Steering a fusion plasma toward stability

28.10.2016 | Power and Electrical Engineering

Bioluminescent sensor causes brain cells to glow in the dark

28.10.2016 | Life Sciences

Activation of 2 genes linked to development of atherosclerosis

28.10.2016 | Life Sciences

More VideoLinks >>>