Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Homebuilding beyond the abyss

Evidence from the Challenger Deep-– the deepest surveyed point in the world's oceans-– suggests that tiny single-celled creatures called foraminifera living at extreme depths of more than ten kilometres build their homes using material that sinks down from near the ocean surface.

The Challenger Deep is located in the Mariana Trench in the western Pacific Ocean. It lies in the hadal zone beyond the abyssal zone, and plunges down to a water depth of around 11 kilometres.

"The hadal zone extends from around six kilometres to the deepest seafloor. Although the deepest parts of the deepest trenches are pretty inhospitable environments, at least for some types of organism, certain kinds of foraminifera are common in the bottom sediments," said Professor Andrew Gooday of the National Oceanography Centre, Southampton (NOCS) and member of a UK-Japanese team studying these organisms in samples collected in 2002 during a Japan-USA-Korea expedition to study life in the western depression of the Challenger Deep.

The researchers, whose findings appear in the latest issue of the journal Deep Sea Research, used the remotely operated vehicle KAIKO, operated by the Japan Agency for Marine-Earth Science and Technology (JAMSTEC), to take core samples from the soft sediment of the trench floor. Among many foraminiferans with an organic shell (or 'test'), they found four undescribed specimens with agglutinated tests.

"The Challenger Deep is an extreme environment for agglutinated foraminifera, which construct their tests from a wide range of particles cemented together by calcareous or organic matter," said Gooday. "At these great depths, particles made from biologically formed calcite and silica, as well as minerals such as quartz, should dissolve, leaving only clay grains available for test building."

The researchers were therefore surprised to discover that foraminiferan tests sampled from the Challenger Deep contained calcareous components, including the dissolved remnants of coccoliths, the calcium carbonate plates of tiny algae called coccolithophores, and planktonic foraminiferan test fragments.

The organic test surface of one species was densely pitted with imprints, which the researchers interpreted as representing mineral grains of various types, including quartz, which subsequently dissolved. Agglutinated particles, presumed to be clay minerals, survived only in one specimen.

"Our observations demonstrate that coccoliths, and probably also planktonic foraminiferan tests, reach the Challenger Deep intact," said Gooday. "These particles were probably transported to these extreme depths in rapidly sinking marine snow, the aggregated remains of phytoplankton that lived in the sunlit surface ocean, or in faecal pellets from zooplankton."

It seems likely, therefore, that at least some agglutinated foraminifera living at extreme hadal depths build their homes from material that sinks down from the ocean above, rather like manna from heaven.

Original publication: Gooday, A. J., Uematsu, K., Kitazato, H., Toyofuku, T. & Young, J. R. "Traces of dissolved particles, including coccoliths, in the tests of agglutinated foraminifera from the Challenger Deep (10,897 m water depth, western equatorial Pacific)." Deep Sea Research Part I: Oceanographic Research Papers 57(2), 239-247 (2010). doi:10.1016/j.dsr.2009.11.003

This study was supported by the Japan Society for the Promotion of Science and the OCEANS 2025 Strategic Research Programme of the UK Natural Environment Research Council.

The researchers are Andrew Gooday (NOCS), K. Uematsu (Marine Works Japan Ltd, Yokosuka, Japan), H. Kitazato & T. Toyofuku (JAMSTEC), and J. R. Young (Natural History Museum, London).

The National Oceanography Centre, Southampton (NOCS) is the UK's focus for ocean science. It is one of the world's leading institutions devoted to research, teaching and technology development in ocean and Earth science. Over 500 research scientists, lecturing, support and seagoing staff are based at the Centre's purpose-built waterside campus in Southampton along with over 700 undergraduate and postgraduate students.

The NOCS is a collaboration between the University of Southampton and the Natural Environment Research Council (NERC). The NERC royal research ships RRS James Cook and RRS Discovery are based at NOCS, as is the National Marine Equipment Pool which includes Autosub and Isis, two of the world's deepest diving research vehicles.

From April 1, 2010, NERC-managed activity at the NOCS joins forces with the Proudman Oceanographic Laboratory in Liverpool to form a new, national research organisation-- the National Oceanography Centre (NOC). The NOC will work in partnership with the UK marine research community to deliver integrated marine science and technology from the coast to the deep ocean. The University of Southampton will be one of the NOC's two hosting partners, the other being the University of Liverpool.

Dr Rory Howlett | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>